Skip to main content

The Book, and Ecology of Sea Ice

  • Chapter
  • First Online:
Arctic Sea Ice Ecology

Abstract

This chapter describes the structure of the book and the diverse significance and importance of sea ice. The first section explains how and why the book is structured following the seasonal events governing the abiotic and biotic parameters in sea ice (1.1). The second section places sea ice into a physical and geopolitical perspective with the new and developing international borders in the Arctic Ocean (1.2). Sea ice ecosystems are then compared to other ecosystems (1.3), followed by a section describing the important and global ecological features of sea ice (1.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arrigo, K. R. (2017). Sea ice as a habitat for primary producers. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 352–369, 652 pp). Oxford: Wiley Blackwell.

    Google Scholar 

  • Arrigo, K. R., Perovich, D., Pickart, R. R., Brown, Z. W., Dijken, G. L., Lowry, K. E., Mills, M. M., Palmer, M. A., Balch, W. M., Bates, N. R., Benitez-Nelson, C. R., Brownlee, E., Frey, K. E., Laney, S. R., Mathis, J., Matsouka, A., Mitchell, B. G., Moore, G. W. K., Reynolds, R. A., Sosik, H. M., & Swift, J. H. (2014). Phytoplankton blooms beneath the sea ice in the Chukchi Sea. Deep-Sea Research II, 105, 1–16. https://doi.org/10.1016/j.dsr2.2014.03.018.

    Article  Google Scholar 

  • Barber, D. G., Hop, H., Mundy, C. J., Else, B., Dmitrenko, I. A., Tremblay, J. E., Ehn, J. K., Assmy, P., Daase, M., Candlish, L. M., & Rysgaard, S. (2015). Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Progress in Oceanography, 139, 122–150. https://doi.org/10.1016/j.pocean.2015.09.003.

    Article  Google Scholar 

  • Bluhm, B. A., Swadling, K. M., & Gradinger, R. (2017). Sea ice as a habitat for macrograzers. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 394–414, 652 pp). Oxford: Wiley Blackwell.

    Google Scholar 

  • Boetius, A., Albrecht, S., Bakker, K., Beinhold, C., Felden, J., Fernández-Méndez, Hendricks, S., Katlein, C., Lalande, C., Krumpen, T., Nicolaus, M., Peeken, I., Rabe, B., Rogacheva, A., Rybakova, E., Somavilla, R., & Wenzhöfer, F. (2013). Export of algal biomass from the melting Arctic sea ice. Science, 339. https://doi.org/10.1126/science.1231346.

  • Brown, T., Assmy, P., Hop, H., Wold, A., & Belt, S. T. (2017). Transfer of ice algae carbon to ice-associated amphipods in the high-Arctic pack ice. Journal of Plankton Research, 39, 664–674. https://doi.org/10.1093/plankt/fbx030.

    Article  Google Scholar 

  • Brown, T. A., Galicia, M. P., Thiemann, G. W., Belt, S. T., Yurkowski, D. J., & Dyck, M. G. (2018). High contributions of sea ice derived carbon in polar bear (Ursus maritimus) tissue. PLoS ONE 13(1): e0191631. https://doi.org/10.1371/journal.pone.0191631.

  • Buck, K. R., Nielsen, T. G., Hansen, B. W., Gastrup-Hansen, D., & Thomsen, H. A. (1998). Infiltration phyto- and protozooplankton assemblages in the annual sea ice of Disko Island, West Greenland, spring 1996. Polar Biology, 20, 377–381. https://doi.org/10.1007/s003000050317.

    Article  Google Scholar 

  • Cota, G. F., & Horne, E. P. W. (1989). Physical control of Arctic ice algal production. Marine Ecology Progress Series, 52, 111–121. https://doi.org/10.3354/meps052111.

    Article  Google Scholar 

  • David, C., Lange, B., Krumpen, T., Schaafsma, F., Franeker, J. A. V., & Flores, H. (2016). Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties. Polar Biology, 39, 981–994. https://doi.org/10.1007/s00300-015-1774-0.

    Article  Google Scholar 

  • Deming, J. W., & Collins, R. E. (2017). Sea ice as a habitat for Bacteria, Archaea and viruses. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 326–351, 652 pp). Oxford: Wiley Blackwell.

    Google Scholar 

  • Espinasse, M., Halsband, C., Varpe, Ø., Gislason, A., Gudmundsson, K., Falk-Petersen, S., & Eiane, K. (2017). The role of local and regional environmental factors for Calanus finmarchicus and C. hyperboreus abundances in the Nordic Seas. Polar Biology, 40, 2363–2380. https://doi.org/10.1007/s00300-017-2150-z.

    Article  Google Scholar 

  • Gradinger, R. (1999). Vertical fine structure of the biomass and composition of algal communities in Arctic pack ice. Marine Biology, 133, 745–754. https://doi.org/10.1007/s002270050516.

    Article  Google Scholar 

  • Gradinger, R. (2009). Sea-ice algae: Major contributors to primary production and algal biomass in the Chukchi and Beaufort Seas during May/June 2002. Deep Sea Research Part II Topical Studies in Oceanography, 56, 1201–1212. https://doi.org/10.1016/j.dsr2.2008.10.016.

    Article  Google Scholar 

  • Grainger, E. H., & Hsiao, S. I. C. (1990). Trophic relationships of the sea ice meiofauna in Frobisher Bay, Arctic Canada. Polar Biology, 10, 283–292.

    Article  Google Scholar 

  • Horvat, C., Jones, D. R., Iams, S., Schroeder, D., Flocco, D., & Feltham, D. (2017). The frequency and extent of sub-ice phytoplankton blooms in the Arctic Ocean. Science Advances, 3(3). https://doi.org/10.1126/sciadv.1601191.

  • Juul-Pedersen, T., Michel, K., Gosselin, M., & Seuthe, L. (2008). Seasonal changes in the sinking export of particulate material under First-year sea ice on the Mackenzie Shelf (western Canadian Arctic). Marine Ecology Progress Series, 353, 13–25. https://doi.org/10.3354/meps07165.

    Article  Google Scholar 

  • Kaartokallio, H. (2004). Food web components, and physical and chemical properties of Baltic Sea ice. Marine Ecology Progress Series, 273, 49–63. https://doi.org/10.3354/meps273049.

    Article  Google Scholar 

  • Kohlbach, D., Lange, B. A., Schaafsma, F. L., David, C., Vortkamp, M., Graeve, M., Franeker, J. A., Krumpen, T., & Flores, H. (2017). Ice algae-produced carbon is critical for overwintering of Antarctic Krill Euphausia superba. Frontiers Marine Science, 4, 310. https://doi.org/10.3389/fmars.2017.00310.

    Article  Google Scholar 

  • Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282. https://doi.org/10.1098/rspb.2015.1546.

  • Leu, E., Mundy, C. J., Assmy, P., Campbell, K., Gabrielsen, T. M., Gosselin, M., Juul-Pedersen, T., & Gradinger, R. (2015). Arctic spring awakening – Steering principles behind the phenology of vernal ice algal blooms. Progress in Oceanography, 139, 151–170. https://doi.org/10.1016/j.pocean.2015.07.012.

    Article  Google Scholar 

  • Lønne, O. J., & Gulliksen, B. (1991). Source, density and composition of sympagic fauna in the Barents Sea. Polar Research, 10, 289–294. https://doi.org/10.3402/polar.v10i1.6747.

    Article  Google Scholar 

  • Lund-Hansen, L. C., Hawes, I., Nielsen, M. H., Dahllöf, I., & Sorrell, B. K. (2018). Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arctic, Antarctic and Alpine Research, 50. https://doi.org/10.1080/15230430.2017.1414468.

  • Martin, A., & McMinn, A. (2018). Sea ice, extremophiles and life on extra-terrestrial ocean worlds. International Journal of Astrobiology, 17, 1–16. https://doi.org/10.1017/S1473550416000483.

  • McMahon, K. W., Ambrose, W. G., Johnson, B. J., Sun, M.-Y., Lopez, G. R., Clough, L. M., & Carroll, M. L. (2006). Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Marine Ecology Progress Series, 310, 1–14. https://doi.org/10.3354/meps310001.

    Article  Google Scholar 

  • Meiners, K. M., & Michel, C. (2017). Dynamics of nutrients, dissolved organic matter and exopolymers in sea ice. In D. N. Thomas (Ed.), Sea ice (3rd ed., pp. 415–432, 652 pp). Oxford: Wiley Blackwell. https://doi.org/10.1002/9781118778371.ch17

  • Mikkelsen, D. M., Rysgaard, S., & Glud, R. N. (2008). Microalgal composition and primary production in Arctic sea ice: A seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland. Marine Ecology Progress Series, 368, 65–74. https://doi.org/10.3354/meps07627.

    Article  Google Scholar 

  • Mundy, C. J., Gosselin, M., Ehn, J., Gratton, Y., Rossnagel, A., Barber, D. G., Martin, J., Trembley, J. E., Palmer, M., Aarigo, K. R., Darnis, G., Fortier, L., Else, B., & Papakyriakou, T. (2009). Contribution of under-ice primary production to an ice-edge upwelling phytoplankton bloom in the Canadian Beaufort Sea. Geophysical Research Letters, 36, L17601. https://doi.org/10.1029/2009GL038837.

  • Pineault, S., Tremblay, J.-É., Gosselin, M., Thomas, H., & Shadwick, E. (2013). The isotopic signature of particulate organic C and N in bottom ice: Key influencing factors and applications for tracing the fate of ice-algae in the Arctic Ocean. Journal of Geophysical Research, 118, 287–300. https://doi.org/10.1029/2012JC008331.

    Article  Google Scholar 

  • Reigstad, M., Carroll, J., Slagstad, D., Ellingsen, I., & Wassmann, P. (2011). Intra-regional comparison of productivity, carbon flux and ecosystem composition within the northern Barents Sea. Progress in Oceanography, 90, 33–46. https://doi.org/10.1016/j.pocean.2011.02.005.

    Article  Google Scholar 

  • Rysgaard, S., & Glud, R. N. (Eds.) (2007). Carbon cycling in Arctic marine ecosystems: Case study Young Sound. Meddelelser om Grønland. Bioscience 58, 214 pp. DCE Copenhagen, Denmark.

    Google Scholar 

  • Rysgaard, S., Kühl, M., Glud, R. N., & Hansen, J. W. (2001). Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Marine Ecology Progress Series, 223, 15–26. https://doi.org/10.3354/meps223015.

    Article  Google Scholar 

  • Sakshaug, E. (2004). Primary and secondary production in the Arctic seas. In R. Stein & R. W. MacDonald (Eds.), The organic carbon cycle in the Arctic Ocean (pp. 57–81, 363 pp). Berlin Heidelberg: Springer.

    Google Scholar 

  • Schuback, N., Hoppe, C. J. K., Tremblay, J. E., Maldonado, M. T., & Tortell, P. D. (2017). Primary productivity and the coupling of the photosynthetic electron transport and carbon fixation in the Arctic Ocean. Limnology and Oceanography, 62, 898–921. https://doi.org/10.1002/lno.10475.

    Article  Google Scholar 

  • Scott, C. L., Kwasniewski, S., Falk-Petersen, S., & Sargent, J. R. (2000). Lipids and life strategies of Calanus finmarchicus, Calanus glacialis and Calanus hyperboreus in late autumn, Kongsfjorden, Svalbard. Polar Biology, 23, 510–516. https://doi.org/10.1007/s003000000114.

    Article  Google Scholar 

  • Selz, V., Saenz, B. T., van Dijken, G. L., & Arrigo, K. R. (2018). Drivers of ice algal bloom variability between 1980 and 2015 in the Chukchi Sea. Journal of Geophysical Research, 123, 7037–7052. https://doi.org/10.1029/2018JC014123.

    Article  Google Scholar 

  • Søgaard, D. H., Kristensen, M., Rysgaard, S., Glud, R. N., Hansen, P. J., & Hilligsøe, K. M. (2010). Autotrophic and heterotrophic activity in Arctic first-year sea ice: Seasonal study from Malene Bight, SW Greenland. Marine Ecology Progress Series, 419, 31–45. https://doi.org/10.3354/meps08845.

    Article  Google Scholar 

  • Søgaard, D. H., Deming, J. W., Meire, L., & Rysgaard, S. (2019). Effects of microbial processes and CaCO3 dynamics on inorganic carbon cycling in snow-covered Arctic winter sea ice. Marine Ecology Progress Series. https://doi.org/10.3354/meps12868.

  • Stiling, P. D. (1996). Ecology: Theories and applications (539 pp). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Szymanski, A., & Gradinger, R. (2016). The diversity, abundance and fate of ice algae and phytoplankton in the Bering Sea. Polar Biology, 39, 309–325. https://doi.org/10.1007/s00300-015-1783-z.

    Article  Google Scholar 

  • Tamelander, T., Renaud, P. E., Hop, H., Carroll, M. L., Ambrode, W. G., & Hobson, K. A. (2006). Trophic relationships and pelagic-benthic coupling during summer in the Barents Sea Marginal Ice Zone revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series, 310, 33–46. https://doi.org/10.3354/meps310033.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lund-Hansen, L.C., Søgaard, D.H., Sorrell, B.K., Gradinger, R., Meiners, K.M. (2020). The Book, and Ecology of Sea Ice. In: Arctic Sea Ice Ecology. Springer Polar Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-37472-3_1

Download citation

Publish with us

Policies and ethics