Skip to main content

Complex Event Processing for Event-Based Process Querying

Part of the Lecture Notes in Business Information Processing book series (LNBIP,volume 362)

Abstract

Process querying targets the filtering and transformation of business process representations, such as event data recorded by information systems. This paper argues for the application of models and methods developed in the general field of Complex Event Processing (CEP) for process querying. Specifically, if event data is generated continuously during process execution, CEP techniques may help to filter and transform process-related information by evaluating queries over event streams. This paper motivates the use of such event-based process querying, and discuss common challenges and techniques for the application of CEP for process querying. In particular, focusing on event-activity correlation, automated query derivation, and diagnostics for query matches.

Keywords

  • Complex event processing
  • Process querying
  • Query derivation

Han van der Aa is funded by a fellowship from the Alexander von Humboldt Foundation.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37453-2_50
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-37453-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

References

  1. van der Aa, H., Gal, A., Leopold, H., Reijers, H.A., Sagi, T., Shraga, R.: Instance-based process matching using event-log information. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 283–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_18

    CrossRef  Google Scholar 

  2. Van der Aa, H., Artikis, A., Weidlich, M.: Complex event processing methods for process querying. In: Process Querying Methods (2019, in press)

    Google Scholar 

  3. Van der Aa, H., Leopold, H., Reijers, H.: Efficient process conformance checking on the basis of uncertain event-to-activity mappings. IEEE TKDE (2019, in press)

    Google Scholar 

  4. Van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

    CrossRef  Google Scholar 

  5. Baier, T., Di Ciccio, C., Mendling, J., Weske, M.: Matching events and activities by integrating behavioral aspects and label analysis. Softw. Syst. Model. 17(2), 1–26 (2017)

    Google Scholar 

  6. Carmona, J., van Dongen, B.F., Solti, A., Weidlich, M.: Conformance Checking-Relating Processes and Models. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99414-7

    CrossRef  Google Scholar 

  7. Cugola, G., Margara, A.: Processing flows of information: from data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:62 (2012)

    CrossRef  Google Scholar 

  8. Del-Río-Ortega, A., Resinas, M., Cabanillas, C., Cortés, A.R.: On the definition and design-time analysis of process performance indicators. Inf. Syst. 38(4), 470–490 (2013)

    CrossRef  Google Scholar 

  9. George, L., Cadonna, B., Weidlich, M.: IL-Miner: instance-level discovery of complex event patterns. PVLDB 10(1), 25–36 (2016)

    Google Scholar 

  10. Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance monitoring in business processes: functionalities, application, and tool-support. Inf. Syst. 54, 209–234 (2015)

    CrossRef  Google Scholar 

  11. Margara, A., Cugola, G., Tamburrelli, G.: Learning from the past: automated rule generation for complex event processing. In: DEBS, pp. 47–58. ACM (2014)

    Google Scholar 

  12. Oliner, A., Ganapathi, A., Xu, W.: Advances and challenges in log analysis. Commun. ACM 55(2), 55–61 (2012)

    CrossRef  Google Scholar 

  13. Polyvyanyy, A.: Business Process Querying. In: Sakr, S., Zomaya, A. (eds.) Encyclopedia of Big Data Technologies. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63962-8

    CrossRef  Google Scholar 

  14. Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: enabling business intelligence through query-based process analytics. Decis. Support Syst. 100, 41–56 (2017)

    CrossRef  Google Scholar 

  15. Polyvyanyy, A., Weidlich, M., Conforti, R., La Rosa, M., ter Hofstede, A.H.M.: The 4C spectrum of fundamental behavioral relations for concurrent systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 210–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_12

    CrossRef  MATH  Google Scholar 

  16. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234–249. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_15

    CrossRef  Google Scholar 

  17. Sadiq, S., Governatori, G., Namiri, K.: Modeling control objectives for business process compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_12

    CrossRef  Google Scholar 

  18. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A.: The ROAD from sensor data to process instances via interaction mining. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 257–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39696-5_16

    CrossRef  Google Scholar 

  19. Wang, J., Han, J.: BIDE: efficient mining of frequent closed sequences. In: ICDE, pp. 79–90. IEEE Computer Society (2004)

    Google Scholar 

  20. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles-efficient computation, applications, and evaluation. Fund. Informaticae 113(3–4), 399–435 (2011)

    MathSciNet  CrossRef  Google Scholar 

  21. Weidlich, M., Ziekow, H., Gal, A., Mendling, J., Weske, M.: Optimizing event pattern matching using business process models. IEEE TKDE 26(11), 2759–2773 (2014)

    Google Scholar 

  22. Weidlich, M., Ziekow, H., Mendling, J., Günther, O., Weske, M., Desai, N.: Event-based monitoring of process execution violations. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 182–198. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23059-2_16

    CrossRef  Google Scholar 

  23. Zhang, H., Diao, Y., Immerman, N.: On complexity and optimization of expensive queries in complex event processing. In: SIGMOD, pp. 217–228. ACM (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han van der Aa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

van der Aa, H. (2019). Complex Event Processing for Event-Based Process Querying. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds) Business Process Management Workshops. BPM 2019. Lecture Notes in Business Information Processing, vol 362. Springer, Cham. https://doi.org/10.1007/978-3-030-37453-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37453-2_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37452-5

  • Online ISBN: 978-3-030-37453-2

  • eBook Packages: Computer ScienceComputer Science (R0)