Skip to main content

Research Challenges for Intelligent Robotic Process Automation

  • Conference paper
  • First Online:
Business Process Management Workshops (BPM 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 362))

Included in the following conference series:


Robotic Process Automation (RPA) is a fast-emerging automation technology in the field of Artificial Intelligence that allows organizations to automate high volume routines. RPA tools are able to capture the execution of such routines previously performed by a human user on the interface of a computer system, and then emulate their enactment in place of the user. In this paper, after an in-depth experimentation of the RPA tools available in the market, we developed a classification framework to categorize them on the basis of some key dimensions. Then, starting from this analysis, we derived four research challenges necessary to inject intelligence into current RPA technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.


  1. All 52 RPA Software Tools and Vendors: Sortable List [2019]. (2019)

  2. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012).

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P.: Process Mining: Data Science in Action, 2nd edn. Springer, Heidelberg (2016).

    Book  Google Scholar 

  4. van der Aalst, W.M.P., Bichler, M., Heinzl, A.: Robotic process automation. BISE 60(4), 269–272 (2018)

    Google Scholar 

  5. Aguirre, S., Rodriguez, A.: Automation of a business process using robotic process automation (RPA): a case study. In: Applied Computer Science in Engineering (2017)

    Google Scholar 

  6. Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. TKDE 31(4), 686–705 (2019)

    Google Scholar 

  7. Bosco, A., Augusto, A., Dumas, M., La Rosa, M., Fortino, G.: Discovering automatable routines from user interaction logs. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M., Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 144–162. Springer, Cham (2019).

    Chapter  Google Scholar 

  8. Dong, G., Pei, J.: Sequence Data Mining, vol. 33. Springer Science & Business Media, Boston (2007)

    MATH  Google Scholar 

  9. Dumais, S., Jeffries, R., Russell, D.M., Tang, D., Teevan, J.: Understanding user behavior through log data and analysis. In: Olson, J.S., Kellogg, W.A. (eds.) Ways of Knowing in HCI, pp. 349–372. Springer, New York (2014).

    Chapter  Google Scholar 

  10. Geyer-Klingeberg, J., Nakladal, J., Baldauf, F., Veit, F.: Process mining and robotic process automation: a perfect match. In: BPM 2018 Workshops (2018

    Google Scholar 

  11. Jimenez-Ramirez, A., Reijers, H.A., Barba, I., Del Valle, C.: A method to improve the early stages of the robotic process automation lifecycle. In: Giorgini, P., Weber, B. (eds.) CAiSE 2019. LNCS, vol. 11483, pp. 446–461. Springer, Cham (2019).

    Chapter  Google Scholar 

  12. Lacity, M., Willcocks, L.P., Craig, A.: RPA at Telefonica O2. Inst. Repo. for The London School of Economics and Political Science (2015)

    Google Scholar 

  13. Lohr, S.: The Beginning of a Wave: A.I. Tiptoes Into the Workplace (2018).

  14. Marrella, A.: Automated planning for business process management. J. Data Semant. 8(2), 79–98 (2019).

    Article  Google Scholar 

  15. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process models. J. Innov. Digit. Ecosyst. 3(2), 183–196 (2016)

    Article  Google Scholar 

  16. Volodymyr, L., Dumas, M., Maggi, F.M., La Rosa, M.: Multi-perspective process model discovery for robotic process automation. In: CAiSE’18 Doct. Cons (2018)

    Google Scholar 

  17. Willcocks, L.P., Lacity, M., Craig, A.: The IT function and robotic process automation. Inst. Repo. The London School of Economics and Political Science (2015)

    Google Scholar 

Download references


This research work has been partly supported by the “Dipartimento di Eccellenza” grant, the H2020 RISE project FIRST (grant #734599), the Sapienza grants IT-SHIRT, ROCKET and METRICS, the Lazio regional initiative “Centro di eccellenza DTC Lazio” and the project ARCA.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Andrea Marrella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Agostinelli, S., Marrella, A., Mecella, M. (2019). Research Challenges for Intelligent Robotic Process Automation. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds) Business Process Management Workshops. BPM 2019. Lecture Notes in Business Information Processing, vol 362. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37452-5

  • Online ISBN: 978-3-030-37453-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics