Skip to main content

Exploring Antimicrobial Resistance Prediction Using Post-hoc Interpretable Methods

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems (KR4HC 2019, TEAAM 2019)

Abstract

An accurate and timely prediction of whether an infection is going to be resistant to a particular antibiotic could improve the clinical outcome of the patient as well as reduce the risk of spreading resistant microorganisms.

From a data analysis perspective, four key factors are present in antimicrobial resistance prediction: the high dimensionality of the data available, the imbalance present in the datasets, the concept drift along time and the need for their acceptance and implantation by clinical staff.

To date, no study has looked specifically at combining different strategies to deal with each of these four key factors. We believe interpretable prediction models are required. This study was undertaken to evaluate the impact of baseline interpretable predicting approaches using a dataset of real hospital data. In particular, we study the capacity of logistic regression, conditional trees and C5.0 rule-based models to improve the prediction when they are combined with oversampling, filtering and sliding windows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    R version 3.4.0 from https://cran.r-project.org/.

References

  1. Guidelines for ATC classification and DDD assignment 2018. Technical report, WHO Collaborating Centre for Drug Statistics Methodology, Oslo, Norway (2017). https://www.whocc.no/filearchive/publications/guidelines.pdf. Accessed 28 Aug 2018

  2. Adams, S.T., Leveson, S.H.: Clinical prediction rules. Br. Med. J. 344, d8312 (2012). https://doi.org/10.1136/bmj.d8312

    Article  Google Scholar 

  3. Babyak, M.A.: What you see may not be what you get: a brief, nontechnical introduction to overfitting in regression-type models. Psychosom. Med. 66(3), 411–421 (2004). https://doi.org/10.1097/01.psy.0000127692.23278.a9

    Article  Google Scholar 

  4. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 49(2), 1–50 (2016). https://doi.org/10.1145/2907070

    Article  Google Scholar 

  5. Brzezinski, D., Stefanowski, J.: Ensemble classifiers for imbalanced and evolving data streams. In: Last, M., Bunke, H., Kandel, A. (eds.) Data Mining in Time Series and Streaming Databases, Machine Perception and Artificial Intelligence, vol. 83, pp. 44–68. World Scientific (2018). https://doi.org/10.1142/9789813228047_0003

  6. Cánovas-Segura, B., Campos, M., Morales, A., Juarez, J.M., Palacios, F.: Development of a clinical decision support system for antibiotic management in a hospital environment. Progress Artif. Intell. 5(3), 181–197 (2016). https://doi.org/10.1007/s13748-016-0089-x

    Article  Google Scholar 

  7. Canovas-Segura, B., et al.: Improving interpretable prediction models for antimicrobial resistance. In: 2019 IEEE International Symposium on Computer Medical Systems (CBMS) (2019)

    Google Scholar 

  8. Canovas-Segura, B., et al.: A process-oriented approach for supporting clinical decisions for infection management. In: 2017 IEEE International Conference on Healthcare Informatics (ICHI), pp. 91–100. IEEE (2017). https://doi.org/10.1109/ICHI.2017.73

  9. Cetinkaya, Y., Falk, P., Mayhall, C.G.: Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 13(4), 686–707 (2000). https://doi.org/10.1128/CMR.13.4.686-707.2000

    Article  Google Scholar 

  10. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1) (2010). https://doi.org/10.18637/jss.v033.i01

  11. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014). https://doi.org/10.1145/2523813

    Article  MATH  Google Scholar 

  12. Hastie, T., Tibshirani, R.: Generalized additive models. In: Encyclopedia of Statistical Sciences. Wiley, Hoboken (2006). https://doi.org/10.1002/0471667196.ess0297.pub2

  13. Hothorn, T., Hornik, K., Zeileis, A.: Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15(3), 651–674 (2006). https://doi.org/10.1198/106186006X133933

    Article  MathSciNet  Google Scholar 

  14. Kuhn, M.: Building predictive models in R using the caret package. J. Stat. Softw. 28(5), 1–26 (2008). https://doi.org/10.18637/jss.v028.i05

    Article  Google Scholar 

  15. Kuhn, M., Johnson, K.: Applied Predictive Modeling. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6849-3

    Book  MATH  Google Scholar 

  16. Leekha, S., Terrell, C.L., Edson, R.S.: General principles of antimicrobial therapy. Mayo Clin. Proc. 86(2), 156–167 (2011). https://doi.org/10.4065/mcp.2010.0639

    Article  Google Scholar 

  17. Lipton, Z.C.: The mythos of model interpretability. CoRR abs/1606.03490 (2016). http://arxiv.org/abs/1606.03490

  18. Mayor, S.: First who antimicrobial surveillance data reveal high levels of resistance globally. Br. Med. J. 462 (2018). https://doi.org/10.1136/bmj.k462

  19. Novoselova, N., Wang, J., Pessler, F., Klawonn, F.: Biocomb: Feature Selection and Classification with the Embedded Validation Procedures for Biomedical Data Analysis. https://cran.r-project.org/web/packages/Biocomb/index.html. Accessed 28 Aug 2018

  20. Palacios, F., et al.: A clinical decision support system for an Antimicrobial Stewardship Program. In: HEALTHINF 2016–9th International Conference on Health Informatics, Proceedings, pp. 496–501. SciTePress, Rome (2016). https://doi.org/10.5220/0005824904960501

  21. Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996). https://doi.org/10.1017/CBO9780511812651

    Book  MATH  Google Scholar 

  22. Steyerberg, E.: Clinical Prediction Models. Statistics for Biology and Health. Springer, New York (2009)

    Book  Google Scholar 

  23. Tibshirani, R.: Regression selection and shrinkage via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996). https://www.jstor.org/stable/2346178

  24. Tsymbal, A.: The problem of concept drift: definitions and related work. Technical report, Department of Computer Science, Trinity College, Dublin (2004)

    Google Scholar 

  25. Van Tyne, D., Gilmore, M.S.: Friend turned foe: evolution of enterococcal virulence and antibiotic resistance. Ann. Rev. Microbiol. 68(1), 337–356 (2014). https://doi.org/10.1146/annurev-micro-091213-113003

    Article  Google Scholar 

  26. Weiss, G.M., Provost, F.: Learning when training data are costly: the effect of class distribution on tree induction. J. Artif. Intell. Res. 19, 315–354 (2003). https://doi.org/10.1613/jair.1199

    Article  MATH  Google Scholar 

  27. Widmer, G., Miroslav, K.: Learning in the presence of concept drift and hidden contexts. Mach. Learn. 23, 69–101 (1996). https://doi.org/10.1007/BF00116900

    Article  Google Scholar 

  28. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: International Conference on Machine Learning (ICML), pp. 1–8 (2003)

    Google Scholar 

Download references

Acknowledgment

This work was partially funded by the SITSUS project (Ref: RTI2018-094832-B-I00), given by the Spanish Ministry of Science, Innovation and Universities (MCIU), the Spanish Agency for Research (AEI) and by the European Fund for Regional Development (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Cánovas-Segura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cánovas-Segura, B. et al. (2019). Exploring Antimicrobial Resistance Prediction Using Post-hoc Interpretable Methods. In: Marcos, M., et al. Artificial Intelligence in Medicine: Knowledge Representation and Transparent and Explainable Systems. KR4HC TEAAM 2019 2019. Lecture Notes in Computer Science(), vol 11979. Springer, Cham. https://doi.org/10.1007/978-3-030-37446-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37446-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37445-7

  • Online ISBN: 978-3-030-37446-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics