How to Use a Knowledge Graph



Intelligent Personal Assistants are changing the way we access the information on the web as search engines changed it years ago. Undoubtfully, an important factor that enables this way of consuming the web is the annotations on websites. Those annotations are extracted and then consumed by search engines and Intelligent Personal Assistants to support tasks like question-answering. In this section we explain how Knowledge Graphs built based on content, data, and service annotations can improve search engine results and conversational systems. We first give a brief overview of the history of the Internet, AI, and web and the role semantic technologies is playing in bringing those three to the point we are today. Then we show the need for an abstraction layer over Knowledge Graphs where we can create different knowledge views in order to achieve scalable curation, reasoning, and access control. Finally, we show how Knowledge Graphs can power conversational agents in different points in the dialog system pipeline and the promising future of service annotations helping to build flexible systems decoupled from the web services with which they communicate.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. A. Ankolekar, M. Burstein, J.R. Hobbs, O. Lassila, D. Martin, D. McDermott, S.A. McIlraith, S. Narayanan, M. Paolucci, T. Payne, K. Sycara, DAML-S: web service description for the Semantic Web, in Proceedings of the 1st International Semantic Web Conference (ISWC2002), Sardinia, Italia, 9–12 June 2002. Springer LNCS, vol. 2342Google Scholar
  2. F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic (Cambridge University Press, Cambridge, 2017)CrossRefGoogle Scholar
  3. F. Bancilhon, D. Maier, Y. Sagiv, J.D. Ullman, Magic sets and other strange ways to implement logic programs (extended abstract), in Proceedings of the 5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems (PODS1986), 24–26 March 1986 (ACM, Cambridge)Google Scholar
  4. S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull, M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, S. Tabet, Semantic Web Services Framework (SWSF) overview, W3C member submission (2005).
  5. T. Berners-Lee, D. Connolly, Notation3 (N3): a readable RDF syntax, W3C Team Submission, 14 January 2008.
  6. T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  7. J. Bleiholder, F. Naumann, Data fusion. ACM Comput. Surv. 41(1), 1–41 (2009)CrossRefGoogle Scholar
  8. R.J. Brachman, The future of knowledge representation, in Proceedings of the 8th National Conference on Artificial Intelligence (AAAI1990), 29 July–3 August 1990 (AAAI Press, Boston)Google Scholar
  9. H. Chen, X. Liu, D. Yin, J. Tang, A survey on dialogue systems: recent advances and new frontiers. ACM SIGKDD Explor. Newsl. 19(2), 25–35 (2017)CrossRefGoogle Scholar
  10. V. D’Silva, D. Kroening, G. Weissenbacher, A survey of automated techniques for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(7), 1165–1178 (2008)CrossRefGoogle Scholar
  11. D. Dell’Aglio, E.D. Valle, F. van Harmelen, A. Bernstein, Stream reasoning: a survey and outlook. Data Sci. 1(1–2), 59–83 (2017)CrossRefGoogle Scholar
  12. D. Diefenbach, V. López, K.D. Singh, P. Maret, Core techniques of question answering systems over knowledge bases: a survey. Knowl. Inf. Syst. 55(3), 529–569 (2018a)CrossRefGoogle Scholar
  13. D. Diefenbach, K.D. Singh, P. Maret, WDAqua-core1: a question answering service for RDF knowledge bases, in Companion Proceedings of the Web Conference (WWW2018), 23–27 April 2018b (ACM, Lyon)Google Scholar
  14. X.L. Dong, F. Naumann, Data fusion—resolving data conflicts for integration. Proc. Very Large Data Bases Endow. 2(2), 1654–1655 (2009)Google Scholar
  15. D. Fensel, C. Bussler, The web service modeling framework WSMF. Electron. Commer. Res. Appl. 1(2), 113–137 (2002)CrossRefGoogle Scholar
  16. D. Fensel, M.A. Musen, The Semantic Web: a brain for humankind. IEEE Intell. Syst. 16(2), 24–25 (2001)CrossRefGoogle Scholar
  17. D. Fensel, F. van Harmelen, Unifying reasoning and search to web scale. IEEE Internet Comput. 11(2), 94–96 (2007)CrossRefGoogle Scholar
  18. D. Fensel, M. Erdmann, R. Studer, Ontology groups: semantically enriched subnets of the WWW, in Proceedings of the 1st International Workshop Intelligent Information Integration During the 21st German Annual Conference on Artificial Intelligence, Freiburg, Germany, September 1997Google Scholar
  19. D. Fensel, J. Angele, S. Decker, M. Erdmann, H. Schnurr, R. Studer, A. Witt, Lessons learned from applying AI to the web. Int. J. Coop. Inf. Syst. 9(4), 361–382 (2000)CrossRefGoogle Scholar
  20. D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E.D. Valle, F. Fischer, Z. Huang, A. Kiryakov, T.K. Lee, L. Schooler, V. Tresp, S. Wesner, M.J. Witbrock, N. Zhong, Towards LarKC: a platform for web-scale reasoning, in Proceedings of the 2nd International Conference on Semantic Computing (ICSC2008), 4–7 August 2008 (IEEE Computer Society, Santa Clara)Google Scholar
  21. Ó. Ferrández, C. Spurk, M. Kouylekov, I. Dornescu, S. Ferrández, M. Negri, R. Izquierdo, D. Tomás, C. Orasan, G. Neumann, B. Magnini, J.L.V. González, The QALL-ME framework: a specifiable-domain multilingual question answering architecture. J. Web Semant. 9(2), 137–145 (2011)CrossRefGoogle Scholar
  22. M.R. Genesereth, A.M. Keller, O.M. Duschka, Infomaster: an information integration system, in Proceedings of the International Conference on Management of Data (SIGMOD1997), 13–15 May 1997 (ACM Press, Tucson)Google Scholar
  23. M. González Bermúdez, DIGUI: A Flexible Dialogue System for Guiding the User Interaction to Access Web Services, Ph.D. thesis, Universitat Politècnica de Catalunya, 2010Google Scholar
  24. P. Groth, F. van Harmelen, A.-C. Ngonga-Ngomo, V. Presutti, J.F. Sequeda, M. Dumontier, Grand challenges, ed. by P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, in Knowledge Graphs: New Directions for Knowledge Representation on the Semantic Web (Dagstuhl Seminar 18371), Dagstuhl Rep. 8(9), 29–111 (2019)Google Scholar
  25. R.V. Guha, Contexts: A Formalization and Some Applications, Ph.D. thesis, Stanford University, STAN-CS-91-1399-Thesis.guha, 1991Google Scholar
  26. R.V. Guha, R. McCool, E. Miller, Semantic search, in Proceedings of the 12th International World Wide Web Conference (WWW2003), 20–24 May 2003 (ACM, Budapest)Google Scholar
  27. S. Hakimov, C. Unger, S. Walter, P. Cimiano, Applying semantic parsing to question answering over linked data: addressing the lexical gap, in Proceedings of the 20th International Conference on Applications of Natural Language to Information Systems (NLDB2015), Passau, Germany, 17–19 June 2015. Springer LNCS, vol. 9103Google Scholar
  28. A. Harth, A. Hogan, R. Delbru, J. Umbrich, S. O’Riain, S. Decker, SWSE: answers before links! in Proceedings of the Semantic Web Challenge 2007 Co-Located with the 6th International Semantic Web Conference (ISWC2007) and the 2nd Asian Semantic Web Conference (ASWC2007), CEUR Workshop Proceedings, vol. 295, Busan, Korea, 11–15 November 2007Google Scholar
  29. K. Höffner, S. Walter, E. Marx, R. Usbeck, J. Lehmann, A.N. Ngomo, Survey on challenges of question answering in the Semantic Web. Semant. Web J. 8(6), 895–920 (2017)CrossRefGoogle Scholar
  30. M. Kifer, G. Lausen, J. Wu, Logical foundations of object-oriented and frame-based languages. J. ACM 42(4), 741–843 (May 1995)MathSciNetCrossRefGoogle Scholar
  31. J. Kim, C. Unger, A.N. Ngomo, A. Freitas, Y. Hahm, J. Kim, G. Choi, J. Kim, R. Usbeck, M. Kang, K. Choi, OKBQA: an open collaboration framework for development of natural language question-answering over knowledge bases, in Proceedings of the 16th International Semantic Web Conference (ISWC 2017): Posters & Demonstrations and Industry Tracks, CEUR Workshop Proceedings, vol. 1963, Vienna, Austria, 23–25 October 2017Google Scholar
  32. J. Kopecký, T. Vitvar, C. Bournez, J. Farrell, SAWSDL: semantic annotations for WSDL and XML schema. IEEE Internet Comput. 11(6), 60–67 (2007)CrossRefGoogle Scholar
  33. R. Kowalski, Predicate Logic as a Programming Language Memo 70, Department of Artificial Intelligence, Edinburgh University. Also in Proceedings IFIP Congress, (North Holland Publishing, Stockholm, 1974), pp. 569–574Google Scholar
  34. M. Lanthaler, C. Guetl, Hydra: a vocabulary for hypermedia-driven web APIs, in Proceedings of the 22nd International World Wide Web Conference (WWW2013): Workshop on Linked Data on the Web (LDOW2013), CEUR Workshop Proceedings, vol. 996, Rio de Janeiro, Brazil, 14 May 2013Google Scholar
  35. D.L. Martin, M. Paolucci, S.A. McIlraith, M.H. Burstein, D.V. McDermott, D.L. McGuinness, B. Parsia, T.R. Payne, M. Sabou, M. Solanki, N. Srinivasan, K.P. Sycara, Bringing semantics to web services: the OWL-S approach, in Proceedings of the Semantic Web Services and Web Process Composition (SWSWPC2004): 1st International Workshop, Revised Selected Papers, San Diego, 6 July 2004. Springer LNCS, vol. 3387Google Scholar
  36. E. Marx, R. Usbeck, A.N. Ngomo, K. Höffner, J. Lehmann, S. Auer, Towards an open question answering architecture, in Proceedings of the 10th International Conference on Semantic Systems (SEMANTICS2014), 4–5 September 2014 (ACM, Leipzig)Google Scholar
  37. M. McTear, Z. Callejas, D. Griol, The Conversational Interface: Talking to Smart Devices (Springer, Cham, 2016)CrossRefGoogle Scholar
  38. D. Milward, M. Beveridge, Ontology-based dialogue systems, in Proceedings of the 3rd International Joint Conference on Artificial Intelligence (IJCAI2013): Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Acapulco, Mexico, 10 August 2003Google Scholar
  39. A. Moschitti, K. Tymoshenko, P. Alexopoulos, A.D. Walker, M. Nicosia, G. Vetere, A. Faraotti, M. Monti, J.Z. Pan, H. Wu, Y. Zhao, Question answering and knowledge graphs, in Exploiting Linked Data and Knowledge Graphs in Large Organisations, ed. by J. Z. Pan, G. Vetere, J. M. Gómez-Pérez, H. Wu, (Springer, Cham, 2017)Google Scholar
  40. E. Motta, J. Domingue, L. Cabral, M. Gaspari, IRS-II: a framework and infrastructure for Semantic Web services, in Proceedings of the 2nd International Semantic Web Conference (ISWC 2003), Sanibel Island, 20–23 October 2003. Springer LNCS, vol. 2870Google Scholar
  41. N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge graphs: lessons and challenges. ACM Queue 17(2), 48–75 (2019)Google Scholar
  42. A.A. Patil, S.A. Oundhakar, A.P. Sheth, K. Verma, METEOR-S web service annotation framework, in Proceedings of the 13th International Conference on World Wide Web (WWW2004), 17–20 May 2004 (ACM, New York)Google Scholar
  43. H. Paulheim, Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web J. 8(3), 489–508 (2017)CrossRefGoogle Scholar
  44. R. Ramakrishnan, J.D. Ullman, A survey of deductive database systems. J. Log. Program. 23(2), 125–149 (1995)MathSciNetCrossRefGoogle Scholar
  45. S.K. Reed, A. Pease, Reasoning from imperfect knowledge. Cogn. Syst. Res. 41, 56–72 (2017)CrossRefGoogle Scholar
  46. D. Roman, J. de Bruijn, A. Mocan, H. Lausen, J. Domingue, C. Bussler, D. Fensel, WWW: WSMO, WSML, and WSMX in a nutshell, in Proceedings of the 1st Asian Semantic Web Conference (ASWC2006), Beijing, China, 3–7 September 2006. Springer LNCS, vol. 4185Google Scholar
  47. D. Roman, J. Kopecký, T. Vitvar, J. Domingue, D. Fensel, WSMO-Lite and hRESTS: lightweight semantic annotations for web services and RESTful APIs. J. Web Semant. 31, 39–58 (2015)CrossRefGoogle Scholar
  48. A.T. Schreiber, G. Schreiber, H. Akkermans, A. Anjewierden, N. Shadbolt, R. de Hoog, W. Van de Velde, N.R. Shadbolt, B. Wielinga, Knowledge Engineering and Management: The CommonKADS Methodolog (MIT Press, Cambridge, MA, 2000)Google Scholar
  49. U. Şimşek, D. Fensel, Intent generation for goal-oriented dialogue systems based on annotations. Presented in the 1st International Workshop on Chatbots Co-Located with the 12th International Conference on Web and Social Media (ICWSM2018), Stanford, 25–28 June 2018a.
  50. U. Şimşek, E. Kärle, D. Fensel, Machine readable web APIs with action annotations, in Proceedings of the 14th International Conference on Semantic Systems (SEMANTICS 2018), 10–13 September 2018b (Elsevier, Vienna)
  51. K. Singh, A.S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas, A. Khikmatullaev, D. Punjani, C. Lange, M.E. Vidal, J. Lehmann, S. Auer, Why reinvent the wheel: let’s build question answering systems together, in Proceedings of the 2018 International World Wide Web Conference (WWW2018), Lyon, France, 23–27 April 2018Google Scholar
  52. D. Sonntag, R. Engel, G. Herzog, A. Pfalzgraf, N. Pfleger, M. Romanelli, N. Reithinger, SmartWeb handheld—multimodal interaction with ontological knowledge bases and Semantic Web services. Artif. Intell. Hum. Comput., 272–295 (2007)Google Scholar
  53. R.J. Sternberg, K. Sternberg, Cognitive Psychology, 6th edn. (Wadsworth, Cengage Learning, Belmont, CA, 2009)Google Scholar
  54. R. Studer, V.R. Benjamins, D. Fensel, Knowledge engineering: principles and methods. Data Knowl. Eng. 25(1–2), 161–197 (1998)CrossRefGoogle Scholar
  55. R. Verborgh, T. Steiner, D.V. Deursen, J.D. Roo, R.V. de Walle, J.G. Vallés, Capturing the functionality of web services with functional descriptions. Multimed. Tools Appl. 64(2), 365–387 (2013)CrossRefGoogle Scholar
  56. R. Verborgh, A. Harth, M. Maleshkova, S. Stadtmüller, T. Steiner, M. Taheriyan, R. Van de Walle, Survey of semantic description of REST APIs, in REST: Advanced Research Topics and Practical Applications, ed. by C. Pautasso, E. Wilde, R. Alarcon, (Springer, Berlin, 2014), pp. 69–89CrossRefGoogle Scholar
  57. A. Zaveri, S. Dastgheib, C. Wu, T. Whetzel, R. Verborgh, P. Avillach, G. Korodi, R. Terryn, K.M. Jagodnik, P. Assis, M. Dumontier, smartAPI: towards a more intelligent network of web APIs, in Proceedings of the 14th European Semantic Web Conference (ESWC2017), Portoroz, Slovenia, 28 May–1 June 2017. Springer LNCS, vol. 10250Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Semantic Technology Institute Innsbruck, Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Onlim GmbHTelfsAustria

Personalised recommendations