Advertisement

Introduction: What Is a Knowledge Graph?

Chapter

Abstract

Since its inception by Google, Knowledge Graph has become a term that is recently ubiquitously used yet does not have a well-established definition. This section attempts to derive a definition for Knowledge Graphs by compiling existing definitions made in the literature and considering the distinctive characteristics of previous efforts for tackling the data integration challenge we are facing today. Our attempt to make a conceptual definition is complemented with an empirical survey of existing Knowledge Graphs. This section lays the foundation for the remainder of the book, as it provides a common understanding on certain concepts and motivation to build Knowledge Graphs in the first place.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Akerkar, P. Sajja, Knowledge-Based Systems (Jones & Bartlett, Sudbury, MA, 2010)Google Scholar
  2. R. Angles, C. Gutiérrez, Querying RDF data from a graph database perspective, in Proceedings of the 2nd European Semantic Web Conference (ESWC2005), Heraklion, Greece, 29 May–1 June 2005. Springer LNCS, vol. 3532Google Scholar
  3. R. Angles, C. Gutiérrez, Survey of graph database models. ACM Comput. Surv. 40(1), 1–39 (2008)CrossRefGoogle Scholar
  4. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, Z.G. Ives, DBpedia: a nucleus for a web of open data, in Proceedings of the 6th International Semantic Web Conference (ISWC2007), 2nd Asian Semantic Web Conference, (ASWC2007), Busan, Korea, 11–15 November 2007. Springer LNCS, vol. 4825Google Scholar
  5. M.K. Bergman, A Knowledge Representation Practionary—Guidelines Based on Charles Sanders Peirce (Springer, Cham, 2018)CrossRefGoogle Scholar
  6. R. Blanco, B.B. Cambazoglu, P. Mika, N. Torzec, Entity recommendations in web search, in Proceedings of the 12th International Semantic Web Conference (ISWC2013), Sydney, Australia, 21–25 October 2013. Springer LNCS, vol. 8219Google Scholar
  7. K.D. Bollacker, C. Evans, P. Paritosh, T. Sturge, J. Taylor, Freebase: a collaboratively created graph database for structuring human knowledge, in Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD2008), 09–12 June 2008 (ACM, Vancouver)Google Scholar
  8. P.A. Bonatti, S. Decker, A. Polleres, V. Presutti, Knowledge graphs: new directions for knowledge representation on the Semantic Web (dagstuhl seminar 18371). Dagstuhl Rep. 8(9), 29–111 (2019)Google Scholar
  9. R.J. Brachman, On the epistemological status of semantic networks, in Associative Networks: Representation and Use of Knowledge by Computers, ed. by N. V. Findler, (Academic, New York, 1979)Google Scholar
  10. R.J. Brachman, The future of knowledge representation, in Proceedings of the 8th National Conference on Artificial Intelligence (AAAI1990), 29 July–3 August 1990 (AAAI Press, Boston)Google Scholar
  11. R.J. Brachman, J.G. Schmolze, An overview of the KL-ONE knowledge representation system. Cogn. Sci. 9(2), 171–202 (1985)CrossRefGoogle Scholar
  12. A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E.R. Hruschka, T.M. Mitchell, Toward an architecture for never-ending language learning, in Proceedings of the 24th Conference on Artificial Intelligence (AAAI2010), 11–15 July 2010 (AAAI Press, Atlanta)Google Scholar
  13. H. Chen, H. Ji, L. Sun, H. Wang, T. Qian, T. Ruan (eds.), Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data—First China Conference, CCKS 2016, Beijing, China, 19–22 September 2016. Revised Selected Papers, Springer Communications in Computer and Information Science, vol. 650 (2016)Google Scholar
  14. E.F. Codd, A relational model of data for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefGoogle Scholar
  15. M. Croitoru, P. Marquis, S. Rudolph, G. Stapleton (eds.), Proceedings of the 5th International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR2017): Revised Selected Papers, Melbourne, 21 August 2017. Springer LNCS, vol. 10775 (2018)Google Scholar
  16. C. d’Amato, M. Theobald (eds.), Proceedings of the 14th International Summer School 2018: Reasoning Web. Learning, Uncertainty, Streaming, and Scalability: Tutorial Lectures, Esch-sur-Alzette, Luxembourg, 22–26 September 2018. Springer LNCS, vol. 11078Google Scholar
  17. J. De Bruijn, R. Lara, A. Polleres, D. Fensel, OWL DL vs. OWL flight: conceptual modeling and reasoning for the Semantic Web, in Proceedings of the 14th International World Wide Web Conference (ISWC2005), 10–14 May 2005 (ACM, Chiba, Japan)Google Scholar
  18. X.L. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, W. Zhang, Knowledge vault: a web-scale approach to probabilistic knowledge fusion, in Proceedings of the 20th ACM Conference on Knowledge Discovery and Data Mining (KDD2014), 24–27 August 2014a (ACM, New York)Google Scholar
  19. H. Ehrig, C. Ermel, U. Golas, F. Hermann, Graph and Model Transformation: General Framework and Applications (Springer, Berlin, 2015)CrossRefGoogle Scholar
  20. L. Ehrlinger, W. Wöß, Towards a definition of knowledge graphs, in Proceedings of the 12th International Conference on Semantic Systems (SEMANTICS2016): Posters and Demos Track, CEUR Workshop Proceedings, vol. 1695, Leipzig, Germany, 12–15 September 2016Google Scholar
  21. F. Erxleben, M. Günther, M. Krötzsch, J. Mendez, D. Vrandečić, Introducing wikidata to the linked data web, in Proceedings of the 13th International Semantic Web Conference (ISWC 2014), Riva del Garda, Italy, 19–23 October 2014. Springer LNCS, vol. 8796Google Scholar
  22. E.A. Feigenbaum, Knowledge engineering: the applied side of artificial intelligence. Ann. NY Acad. Sci. 426(1), 91–107 (1984). (Originally published 1980)CrossRefGoogle Scholar
  23. D. Fensel, M.A. Musen, The Semantic Web: a brain for humankind. IEEE Intell. Syst. 16(2), 24–25 (2001)CrossRefGoogle Scholar
  24. D. Fensel, F. van Harmelen, Unifying reasoning and search to web scale. IEEE Internet Comput. 11(2), 94–96 (2007)CrossRefGoogle Scholar
  25. D. Fensel, M. Erdmann, R. Studer, Ontology groups: semantically enriched subnets of the WWW, in Proceedings of the 1st International Workshop Intelligent Information Integration During the 21st German Annual Conference on Artificial Intelligence, Freiburg, Germany, September 1997Google Scholar
  26. D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E.D. Valle, F. Fischer, Z. Huang, A. Kiryakov, T.K. Lee, L. Schooler, V. Tresp, S. Wesner, M.J. Witbrock, N. Zhong, Towards LarKC: a platform for web-scale reasoning, in Proceedings of the 2nd International Conference on Semantic Computing (ICSC2008), 4–7 August 2008 (IEEE Computer Society, Santa Clara)Google Scholar
  27. J.M. Giménez-García, M.C. Duarte, A. Zimmermann, C. Gravier, E.R. Hruschka Jr., P. Maret, NELL2RDF: Reading the Web, and Publishing It as Linked Data, Technical Report (2018). https://arxiv.org/abs/1804.05639
  28. I.J. Goodfellow, Y. Bengio, A.C. Courville, Deep Learning. Adaptive Computation and Machine Learning (MIT Press, Cambridge, 2016)zbMATHGoogle Scholar
  29. R.V. Guha, Contexts: A Formalization and Some Applications, Ph.D. thesis, Stanford University, STAN-CS-91-1399-Thesis.guha, 1991Google Scholar
  30. R.V. Guha, D. Brickley, S. Macbeth, Schema.org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)
  31. P. Hayes, The Logic of Frames, Readings in Artificial Intelligence (Morgan Kaufmann, Los Altos, CA, 1981)Google Scholar
  32. G.W.F. Hegel, Science of Logic, vol. I, Section 3, Chapter 1, A. The Specific Quantum (Translated by A.V. Miller). Atlantic Highlands: Humanities Paperback Library, Originally appeared (1812)Google Scholar
  33. R. Hoekstra, The knowledge reengineering bottleneck. Semant. Web J. 1(1–2), 111–115 (2010)CrossRefGoogle Scholar
  34. J. Hoffart, F.M. Suchanek, K. Berberich, G. Weikum, YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intell. 194, 28–61 (2013)MathSciNetCrossRefGoogle Scholar
  35. J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P.N. Mendes, S. Hellmann, M. Morsey, P. van Kleef, S. Auer, C. Bizer, DBpedia—a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2015)CrossRefGoogle Scholar
  36. D.B. Lenat, CYC: a large-scale investment in knowledge infrastructure. Commun. ACM 38(11), 33–38 (1995)CrossRefGoogle Scholar
  37. D.B. Lenat, R.V. Guha, Building Large Knowledge-Based Systems; Representation and Inference in the Cyc Project, 1st edn. (Addison-Wesley Longman, Reading, MA, 1989)Google Scholar
  38. J. Li, M. Zhou, G. Qi, N. Lao, T. Ruan, J. Du (eds.), Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence—Second China Conference (CCKS2017): Revised Selected Papers, Chengdu, China, 26–29 August 2017. Springer CCIS, vol. 784Google Scholar
  39. F. Mahdisoltani, J. Biega, F.M. Suchanek, YAGO3: a knowledge base from multilingual Wikipedias, in Proceedings of Seventh Biennial Conference on Innovative Data Systems Research (CIDR2015), Online Proceedings, Asilomar, CA, 4–7 January 2015. www.cidrdb.org
  40. S. Malyshev, M. Krötzsch, L. González, J. Gonsior, A. Bielefeldt, Getting the most out of Wikidata: semantic technology usage in Wikipedia’s knowledge graph, in Proceedings of 17th International Semantic Web Conference (ISWC 2018), Monterey, CA, 8–12 October 2018. Springer LNCS, vol. 11137Google Scholar
  41. T.M. Mitchell, W.W. Cohen, E.R. Hruschka Jr., P.P. Talukdar, B. Yang, J. Betteridge, A. Carlson, B.D. Mishra, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohamed, N. Nakashole, E.A. Platanios, A. Ritter, M. Samadi, B. Settles, R.C. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, J. Welling, Never-ending learning. Commun. ACM 61(5), 103–115 (2018)CrossRefGoogle Scholar
  42. A. Newell, The knowledge level. Artif. Intell. 18(1), 87–127 (1982)MathSciNetCrossRefGoogle Scholar
  43. N. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson, J. Taylor, Industry-scale knowledge graphs: lessons and challenges. ACM Queue 17(2), 48–75 (2019)Google Scholar
  44. J.Z. Pan, D. Calvanese, T. Eiter, I. Horrocks, M. Kifer, F. Lin, Y. Zhao (eds.), Reasoning Web: Logical Foundation of Knowledge Graph Construction and Query Answering—12th International Summer School 2016: Tutorial Lectures, Aberdeen, UK, 5–9 September 2017a. Springer LNCS, vol. 9885Google Scholar
  45. J. Z. Pan, G. Vetere, J. M. Gómez-Pérez, H. Wu (eds.), Exploiting Linked Data and Knowledge Graphs in Large Organisations (Springer, Cham, 2017b)Google Scholar
  46. P.F. Patel-Schneider, Analyzing Schema.org, in Proceedings of the 13th International Semantic Web Conference (ISWC2014), Riva del Garda, Italy, 19–23 October 2014. Springer LNCS, vol. 8796
  47. P.F. Patel-Schneider, I. Horrocks, Position paper: a comparison of two modelling paradigms in the Semantic Web, in Proceedings of the 15th International World Wide Web Conference (WWW2006), 23–26 May 2006 (ACM, Edinburgh)Google Scholar
  48. H. Paulheim, Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web J. 8(3), 489–508 (2017)CrossRefGoogle Scholar
  49. H. Paulheim, Machine learning with and for Semantic Web knowledge graphs, ed. by C. d’Amato, M. Theobald, in Proceedings of the 14th International Summer School 2018: Reasoning Web. Learning, Uncertainty, Streaming, and Scalability: Tutorial Lectures, Esch-sur-Alzette, Luxembourg, 22–26 September 2018a. Springer LNCS, vol. 11078Google Scholar
  50. G. Qi, J. Tang, J. Du, J.Z. Pan, Y. Yu (eds.), Linked Data and Knowledge Graph—7th Chinese Semantic Web Symposium and 2nd Chinese Web Science Conference (CSWS2013): Revised Selected Papers, Shanghai, China, 12–16 August 2013. Springer CCIS, vol. 406Google Scholar
  51. G. Qi, H. Chen, K. Liu, H. Wang, Q. Ji, T. Wu, Knowledge Graph (Springer, Cham, 2020)Google Scholar
  52. W. Reisig, Understanding Petri Nets—Modeling Techniques, Analysis Methods, Case Studies (Springer, Cham, 2013)zbMATHGoogle Scholar
  53. H.A. Simon, Models of Man: Social and Rational-Mathematical Essays on Rational Human Behavior in a Social Setting (Wiley, New York, 1957)zbMATHGoogle Scholar
  54. J.F. Sowa, Semantic networks, in Encyclopedia of Artificial Intelligence, ed. by S. C. Shapiro, 2nd edn., (Wiley, New York, 1992). http://www.jfsowa.com/pubs/semnet.pdfGoogle Scholar
  55. F.M. Suchanek, G. Kasneci, G. Weikum, Yago: a core of semantic knowledge, in Proceedings of the 16th International World Wide Web Conference (WWW2007), 8–12 May 2007 (ACM, Banff, Canada)Google Scholar
  56. M. Van Erp, S. Hellmann, J.P. McCrae, C. Chiarcos, K. Choi, J. Gracia, Y. Hayashi, S. Koide, P.N. Mendes, H. Paulheim, H. Takeda (eds.), Knowledge graphs and language technology, in Proceedings of the 15th International Semantic Web Conference (ISWC2016): International Workshops: KEKI and NLP&DBpedia, Kobe, Japan, 17–21 October 2016. Revised selected papers. Springer LNCS, vol. 10579 (2017)Google Scholar
  57. D. Vrandečić, M. Krötzsch, Wikidata: a free collaborative knowledge base. Commun. ACM 57(10), 78–85 (2014)CrossRefGoogle Scholar
  58. World Travel & Tourism Council, Travel & Tourism Economic Impact 2018 World (2018). https://www.wttc.org/-/media/files/reports/economic-impact-research/regions-2018/world2018.pdf

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Semantic Technology Institute Innsbruck, Department of Computer ScienceUniversity of InnsbruckInnsbruckAustria
  2. 2.Onlim GmbHTelfsAustria

Personalised recommendations