Skip to main content

Dynamics Characteristics Optimization for the UAV Ensemble of Motions

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1140))

Abstract

The tasks of multicopters control are considered as an area for application of modern theoretical approaches to the control system design. The paper considers the multicopter control system, which includes a subsystem of equilibrium stabilization and an executive subsystem. The executive system is responsible for changing the position of the apparatus in space according to the commands of the operator. The program list of control commands and a wide range of perturbations affecting the multicopter are forming a whole ensemble of movements of the UAV. The equations of the control system expand the vector of states of the multicopter. The coefficients in the control regulator are adjusted to provide the desired dynamics characteristics of the ensemble of movements. The novelty of this approach is that the problem of simultaneous optimization of the executive and stabilizing subsystems has been presented. Ensemble of program and perturbed motions of the multicopter is described by guarantee upper estimations. The results of practical calculations for a particular UAV are presented. The simulation demonstrates the ensemble dynamics before and after optimization. Transient diagrams show an optimized response to the operator’s control commands. The analytical part of the work was carried out for a multicopter with an arbitrary even number of screws more than three.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Holda, C., Ghalamchi, B., Mueller, M.W.: Tilting multicopter rotors for increased power efficiency and yaw authority. In: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018, vol. 8453359, pp. 143–148 (2018) https://doi.org/10.1109/icuas.2018.8453359

  2. Silano, G., Aucone, E., Iannelli, L.: CrazyS: a software-in-the-loop platform for the Crazyflie 2.0 nano-quadcopter. In: MED 2018 - 26th Mediterranean Conference on Control and Automation, vol. 8442759, pp. 352-357 (2018) https://doi.org/10.1109/med.2018.8442759

  3. Mhdawi, A.K.A., Al-Raweshidy, H.: SDQ-6WI: software defined quadcopter-six wheeled IoT sensor architecture for future wind turbine placement. IEEE Access 6, 53426–53437 (2018). https://doi.org/10.1109/ACCESS.2018.2871271

    Article  Google Scholar 

  4. Zavadskiy, S., Sharovatova, D.: Improvement of quadrocopter command performance system. In: Stability and Control Processes in Memory of V.I. Zubov (SCP), pp. 609–610 (2015) https://doi.org/10.1109/scp.2015.7342220

  5. Lepikhin, T.A.: The analysis of Quadrocopter and Hexacopter dynamics. In: AIP Conference Proceedings, vol. 1738, p. 160005 (2016). https://doi.org/10.1063/1.4951938

  6. Betancourt-Vera, J., Castillo, P., Lozano, R., Vidolov, B.: Robust control scheme for trajectory generation and tracking for quadcopters vehicles: Experimental results. In: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018, vol. 8453482, pp. 1118–1124 (2018). https://doi.org/10.1109/icuas.2018.8453482

  7. Cantieri, A.R., et al.: A quadcopter and mobile robot cooperative task using visual tags based on augmented reality ROS package. Stud. Comput. Intell. 778, 185–208 (2018). https://doi.org/10.1007/978-3-319-91590-6_6

    Article  Google Scholar 

  8. Hatem, I., Jamal, M., Murhij, Y., Ali, Z.: Low-cost quadcopter indoor positioning system based on image processing and neural networks. Mech. Mach. Sci. 58, 243–257 (2018). https://doi.org/10.1007/978-3-319-89911-4_18

    Article  Google Scholar 

  9. Sanders, B., Vincenzi, D., Holley, S., Shen, Y.: Traditional vs gesture based UAV control. In: Advances in Human Factors in Robots and Unmanned Systems. AHFE 2018. Advances in Intelligent Systems and Computing, vol. 784, pp. 15–23 (2018) https://doi.org/10.1007/978-3-319-94346-6_2

    Google Scholar 

  10. Thien, R.T.Y., Kim, Y.: Decentralized formation flight via PID and integral sliding mode control. Aerosp. Sci. Technol. 81, 322–332 (2018). https://doi.org/10.1016/j.ast.2018.08.011

    Article  Google Scholar 

  11. Mendoza-Soto, J.L., Alvarez-Icaza, L., Rodríguez-Cortés, H.: Constrained generalized predictive control for obstacle avoidance in a quadcopter. Robotica 36(9), 1363–1385 (2018). https://doi.org/10.1017/S026357471800036X

    Article  Google Scholar 

  12. Dubay, S., Pan, Y.-J.: Distributed MPC based collision avoidance approach for consensus of multiple quadcopters. In: IEEE International Conference on Control and Automation, ICCA, vol. 8444273, pp. 155–160 (2018). https://doi.org/10.1109/ICCA.2018.8444273

  13. Masse, C., Gougeon, O., Nguyen, D.-T., Saussie, D.: Modeling and control of a quadcopter flying in a wind field: a comparison between LQR and structured ∞ control techniques. In: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018, vol. 8453402, pp. 1408–1417 (2018) https://doi.org/10.1109/icuas.2018.8453402

  14. Joukhadar, A., AlChehabi, M., Stöger, C., Müller, A.: Trajectory tracking control of a quadcopter UAV using nonlinear control. In: Rizk, R., Awad, M. (eds.) Mechanism, Machine, Robotics and Mechatronics Sciences. MMS, vol. 58, pp. 271–285. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-89911-4_20

    Chapter  Google Scholar 

  15. Veremey, E., Knyazkin, Y.: Siso problems of h2-optimal synthesis with allocation of control actions. WSEAS Trans. Syst. Control 12, 193–200 (2017)

    Google Scholar 

  16. Zhabko, N.A., Lepikhin, T.A.: Astatic controller synthesis for quadcopter motion control [in Russian]. In: Sukhomlin, V., Zubareva, E., Sneps-Sneppe, M. (eds.) Proceedings of the 2nd International Scientific Conference “Convergent Cognitive Information Technologies” (Convergent 2017), Moscow, Russia, 24–26 November 2017. CEUR Workshop Proceedings, vol. 2064, pp. 255-263 (2017). http://ceur-ws.org/Vol-2064/paper30.pdf. Accessed 21 Jun 2018

  17. Ananyev, B.: About control of guaranteed estimation. Cybern. Phys. 7(1), 18–25 (2018)

    Google Scholar 

  18. Talagaev, Y.: State estimation, robust properties and stabilization of positive linear systems with superstability constraints. Cybern. Phys. 6(1), 32–39 (2017)

    Google Scholar 

  19. Pairan, M.F., Shamsudin, S.S.: System identification of an unmanned quadcopter system using MRAN neural. In: IOP Conference Series: Materials Science and Engineering, vol. 270, no. 1, p. 012019 (2017). https://doi.org/10.1088/1757-899X/270/1/012019

    Article  Google Scholar 

  20. Rastgoftar, H., Atkins, E.M.: Continuum deformation of a multiple quadcopter payload delivery team without inter-agent communication. In: 2018 International Conference on Unmanned Aircraft Systems, ICUAS 2018, vol. 8453433, pp. 539–548 (2018). https://doi.org/10.1109/icuas.2018.8453433

  21. Tikhonov, N.O., Lepikhin, T.A., Zhabko, N.A.: Mathematical modelling of tricopter [in Russian]. In: Sukhomlin, V., Zubareva, E., Sneps-Sneppe, M. (eds.) Proceedings of the 2nd International Scientific Conference “Convergent Cognitive Information Technologies” (Convergent 2017), Moscow, Russia, 24–26 November 2017. CEUR Workshop Proceedings, vol. 2064, pp. 335-340 (2017) http://ceur-ws.org/Vol-2064/paper39.pdf. Accessed 21 Jun 2018

  22. Boiko, I., Chehadeh, M.: Sliding mode differentiator/observer for quadcopter velocity estimation through sensor fusion. Int. J. Control 91(9), 2113–2120 (2018). https://doi.org/10.1080/00207179.2017.1421775

    Article  MathSciNet  MATH  Google Scholar 

  23. Zavadskiy, S.V.: Concurrent optimization of plasma shape and vertical position controllers for ITER tokamak. In: 20th International Workshop on Beam Dynamics and Optimization (BDO), pp. 196–197 (2014). https://doi.org/10.1109/bdo.2014.6890102

  24. Ovsyannikov, D.A., Zavadskiy, S.V.: Optimization approach to the synthesis of plasma stabilization system in tokamak iter. Probl. At. Sci. Technol. 116(4), 102–105 (2018)

    Google Scholar 

  25. Kirichenko, N.: Introduction to the Motion Stabilization Theory, Kiev (1978). [in Russian]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Zavadskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zavadskiy, S., Lepikhin, T. (2020). Dynamics Characteristics Optimization for the UAV Ensemble of Motions. In: Sukhomlin, V., Zubareva, E. (eds) Convergent Cognitive Information Technologies. Convergent 2018. Communications in Computer and Information Science, vol 1140. Springer, Cham. https://doi.org/10.1007/978-3-030-37436-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37436-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37435-8

  • Online ISBN: 978-3-030-37436-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics