Skip to main content

Challenges and Perspectives for Integrated Landscape Modelling to Support Sustainable Land Use Management in Agricultural Landscapes

  • Chapter
  • First Online:
Landscape Modelling and Decision Support

Abstract

This contribution discusses scientific challenges and new possibilities for better modelling of the consequences of changes in land use and land management in whole landscapes on ecosystem functions in space and time. The regional dimension under discussion is an area of up to several thousand square kilometres. Main problems on this scale are high complexity, structural diversity, ecological heterogeneity, inadequate representation of the governing processes in the model with respect to a given application and uncertainty in data and in understanding of the process dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajibefun IA, Wenkel K-O, Wieland R, Mirschel W (2004) Modelling of landscape and land use changes: with application of spatial analysis modelling tool to Quillow region of North East Germany. J Food Agric Environ 2(2):364–368

    Google Scholar 

  • Antle JM, Basso B, Conant RT, Charles H, Godfray J, Jones JW, Herrero M, Howitt RE, Keating BA, Munos-Carpena R, Rosenzweig C (2017) Towards a new generation of agricultural system data, models and knowledge products: design and improvement. Agric Syst 155(2017):255–268

    Article  Google Scholar 

  • Benz J, Hoch R, Legovic T (2001) ECOBAS—modelling and documentation. Ecol Model 138(1–3):3–15

    Article  Google Scholar 

  • Brisson N, Gary C, Justes A, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Burger P, Bussiére F, Cabidoche YM, Cellier P, Debaeke P, Gaudillér JP, Hénault C, Maraux F, Seguin B, Sinoquet H (2003) An overview of the crop model STICS. Eur J Agron 18:309–332

    Article  Google Scholar 

  • Claussen M, Mysak LA, Weaver AJ, Crucifix M, Fichefet T, Loutre M-F, Weber SL, Alcamo J, Alexeev VA, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov II, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Clim Dyn 18:579–586

    Article  Google Scholar 

  • Dale VH (2003) Opportunities for using ecological models for resource management. In: Dale VH (ed) Ecological modeling for resource management. Springer, New York, pp 3–19

    Chapter  Google Scholar 

  • Dale VH, van Winkle W (1998) Models provide understanding, not belief. Bull Ecol Soc Am 79:169–170

    Google Scholar 

  • ECOBAS (2011) WWW server for ecological modelling. http://ecobas.org/www-server. Accessed 07 Mar 2019

  • Hansen S, Jensen HE, Nielsen NE, Svendsen H (1990) DAISY: soil plant atmosphere system model. The national agency for environmental protection, Copenhagen, NPO Report No. A10, 272 pp

    Google Scholar 

  • HDF5 (2019) Introduction to HDF5. https://support.hdfgroup.org/HDF5/doc/H5.intro.html. Accessed 11 Mar 2019

  • Hurni H (2000) Assessing sustainable land management. Agric Ecosyst Environ 81(2):83–92

    Google Scholar 

  • ILTER (2006) International long term ecological research network (ILTER). https://www.ilter.network. Accessed 07 Mar 2019

  • Jones JW, Antle JM, Basso B et al (2017) Toward a new generation of agricultural system data, models, and knowledge products: state of agricultural systems science. Agric Syst 155:269–288

    Article  Google Scholar 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochmann Z, McLean G, Vergurg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulations. Eur J Agron 18:267–288

    Article  Google Scholar 

  • Kersebaum KC (1995) Application of a simple management model to simulate water and nitrogen dynamics. Ecol Model 81:145–156

    Article  CAS  Google Scholar 

  • Lausch A (2003) Integration of spatio-temporal landscape analysis in model approaches. In: Helming K, Wiggering H (eds) Sustainable development of multifunctional landscapes. SpringerVerlag, Berlin, Heidelberg, pp 111–123

    Chapter  Google Scholar 

  • Mirschel W, Berg-Mohnicke M, Wenkel K-O, Wieland R, Köstner B (2019) LandCaRe-DSS—an interactive model-based decision support system for assessing the impacts of climate change on agriculture and agricultural landscapes (in this book)

    Google Scholar 

  • Mirschel W, Schultz A, Wenkel K-O (2001) Assessing the impact of land use intensity and climate change on ontogenesis, biomass production, and yield of northeast German agro-landscapes. In: Tenhunen JD, Lenz R, Hantschel R (eds) Ecosystem approaches to landscape management in central Europe. Ecological studies, vol 147. Springer-Verlag, Berlin, Heidelberg, New York, pp 299–313

    Google Scholar 

  • Mirschel W, Wieland R, Voss M, Ajibefun IA, Deumlich D (2006) Spatial analysis and modeling tool (SAMT), 2. Applications. Ecol Inform 1:77–85

    Article  Google Scholar 

  • NDVI (2018) What is NDVI (normalized difference vegetation index). https://gisgeography.com/ndvi-normalized-difference-vegetation-index. Accessed 4 Mar 2019

  • Nendel C, Berg M, Kersebaum KC, Mirschel W, Specka X, Wegehenkel M, Wenkel KO, Wieland R (2011) The MONICA model: testing predictability for crop growth, soil moisture and nitrogen dynamics. Ecol Model 222(9):1614–1625

    Article  CAS  Google Scholar 

  • Nendel C, Kersebaum KC, Mirschel W, Wenkel K-O (2014) Testing farm management options as a climate change adaptation strategy using the MONICA model. Eur J Agron 52(2014):47–56

    Article  Google Scholar 

  • Poluektov RA, Fintushal SM, Oparina IV, Shatskikh DV, Terleev VV, Zakharova ET (2002) AGROTOOL—a system for crop simulation. Arch Agron Soil Sci 48:609–635

    Article  CAS  Google Scholar 

  • Ritchie JT, Godwin DC (1993) Simulation of nitrogen dynamics in the soil plant system with the CERES models. Agrarinformatik 24:215–230

    Google Scholar 

  • Seitz W, Kirwan AD (2014) Entropy vs. majorization: what determines complexity? Entropy 16:3793–3807

    Article  Google Scholar 

  • Seppelt R (2003) Computer-based environmental management. Wiley-VCH Verlag, Weinheim, p 281

    Book  Google Scholar 

  • Siegmund N, Funk R, Koszinski S, Buschiazzo D, Sommer M (2018) Effects of low-scale landscape structures on aeolian transport processes on arable land. Aeol Res 32:181–191

    Article  Google Scholar 

  • Specka X, Nendel C, Wieland R (2015) Analysing the parameter sensitivity of the agro-ecosystem model MONICA for different crops. Eur J Agron 71:73–87

    Article  Google Scholar 

  • Supit I, Hooijer AA, van Diepen CA (eds) (1994) EUR 15956—system description of the WOFOST 6.0 crop simulation model implemented in CGMS European Commission. Office for Official Publications of the European Communities, Luxembourg. Agricultural Series, Catalogue Number: CL-NA-15956-EN-C, Theory and Algorithms, 1, 146 pp

    Google Scholar 

  • TERENO (2019) TERENO—terestrial environmental observatories. http://www.tereno.net/overview-de. Accessed 05 Mar 2019

  • Wechsung F (2005) Herausforderungen des globalen Wandels für die Elbe-Region. In: Wechsung F, Becker A, Gräfe P (eds) Auswirkungen des globalen Wandels auf Wasser, Umwelt und Gesellschaft im Elbegebiet. Weißensee Verlag Berlin, Kap I-1

    Google Scholar 

  • Wegehenkel M, Mirschel W, Wenkel K-O (2004) Predictions of soil water and crop growth dynamics using the agro-ecosystem models THESEUS and OPUS. J Plant Nutr Soil Sci 167(6):736–744

    Article  CAS  Google Scholar 

  • Wenkel K-O, Berg M, Mirschel W, Wieland R, Nendel C, Köstner B (2013) LandCaRe DSS—an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies. J Environ Manage 127(Supplement):S168–S183

    Article  Google Scholar 

  • Wenkel K-O, Mirschel W (1995) Agroökosystemmodellierung—Grundlage für die Abschätzung von Auswirkungen möglicher Landnutzungs und Klimaänderungen. ZALF-Bericht 24, Müncheberg, 187 pp

    Google Scholar 

  • Wenkel K-O, Schultz A, Lutze G (1997) Landschaftsmodellierung—Anspruch und Realität. Arch für Nat-Lands 36:61–85

    Google Scholar 

  • Wenkel K-O, Wieland R, Mirschel W, Schultz A, Kampichler C, Kirilenko A, Voinov A (2008) Regional models of intermediate complexity (REMICs)—a new direction in integrated landscape modelling. In: Jakeman AJ, Voinov AA, Rizzolia AE, Chen SH (eds) Environmental modelling, software and decision support—state of the art and new perspectives—, developments in integrated environmental assessment, vol 3. Elsevier, Amsterdam, pp 285–295

    Google Scholar 

  • Wieland R, Groth K, Linde F, Mirschel W (2015) Spatial analysis and modeling tool version 2 (SAMT2), a spatial modeling tool kit written in Python. Ecol Inform 30(2015):1–5

    Article  Google Scholar 

  • Wieland R, Voss M, Holtmann X, Mirschel W, Ajibefun IA (2006) Spatial analysis and modeling tool (SAMT): 1. Structure and possibilities. Ecol Inform 1:67–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfried Mirschel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wenkel, KO., Wieland, R., Mirschel, W. (2020). Challenges and Perspectives for Integrated Landscape Modelling to Support Sustainable Land Use Management in Agricultural Landscapes. In: Mirschel, W., Terleev, V., Wenkel, KO. (eds) Landscape Modelling and Decision Support. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-37421-1_2

Download citation

Publish with us

Policies and ethics