Skip to main content

Agent-Based Modelling of a Simple Synthetic Rangeland Ecosystem

  • Chapter
  • First Online:
Landscape Modelling and Decision Support

Part of the book series: Innovations in Landscape Research ((ILR))

Abstract

The model described in this article aims at simulating free-grazing herbivores in a rangeland landscape. The first aim of the model is to find a balance between the herbivores and the vegetation dynamics guaranteeing sustainability: maintain a healthy animal population and a green landscape. Two opposite processes threaten this equilibrium: overgrazing, leading to desertification; undergrazing leading to bush invasion. Both processes may ultimately lead to the population extinction by starving and pasture invasion by bushy vegetation. The model has been implemented with the NetLogo simulation platform (Wilensky in NetLogo, http://ccl.northwestern.edu/netlogo. Northwestern University, Evanston, IL, 1999). It comprises two types of agents: cells in a spatial grid, standing for land plots, and mobile agents, standing for herbivores (here cattle). The land plots are characterized by their colour: shades of green represent grass as a function of its growth. The herbivores are characterized by attributes like their birth date, age, previous location, destination, pathway, travelled distance, ingested feed, body weight, calving dates. At each simulation time step, the herbivores iterate the following activities: find a destination, move, graze, gain and lose weight, age and, possibly, calve or die. Model simulations can be made to check variants of rangeland landscapes comprising thousands of hectares and herbivore heads. Simulation assessment criteria are the herbage biomass, herbivore population size, individual body weights, birth and mortality rates, land-use patterns and landscape fragmentation obtained after time periods of, possibly, tens of years. We give an example of simulations of a scenario giving rise to the emergence of a “grazing lawn”, that is a highly productive rangeland with a low vegetation standing biomass capable of sustaining a high stocking rate of herbivores. As the model’s ambition is not to mimic real specific rangelands but to offer a generic simple synthetic ecosystem to check ecological hypotheses or theories, we also show how to check the Ideal Free Distribution theory based on the simulated example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    According to the Russel and Norvig’s (2010) definition: “An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through effectors”.

  2. 2.

    BCR, see Mayer et al. (2012); also called “Relative condition” in the Grazplan model (Freer et al. 1991).

References

  • Anselme B, Bousquet F, Lyet A, Etienne M, Fady B, Le Page C (2010) Modelling of spatial dynamics and biodiversity conservation on Lure mountain (France). Environ Model Softw 25:1385–1398

    Article  Google Scholar 

  • Bayer W, Waters-Bayer A (1999) La gestion des fourrages. Margraf Verlag, Weikersheim, 246 pp

    Google Scholar 

  • Bonnet O (2008) Contraintes et avantages des «grazing lawns» en tant que ressource alimentaire chez les grands herbivores africains. Ph.D. thesis, Pierre & Marie Curie University, Paris, 175 pp

    Google Scholar 

  • Bonnet O, Fritz H, Gignoux J, Meuret M (2010) Challenges of foraging on a high quality but unpredictable food source: the dynamics of grass production and consumption in savanna grazing lawns. J Ecol 98:908–916

    Article  Google Scholar 

  • Boval M, Edouard N, Naves M, Sauvant D (2015) Performances de croissance et efficacité alimentaire des bovins au pâturage en conditions tropicales: étude par méta-analyse. INRA Prod Anim 28(4):315–328

    Article  Google Scholar 

  • Brooks CJ, Harris S (2008) Directed movement and orientation across a large natural landscape by zebras, Equus burchelli antiquorum. Anim Behav 76:277–285

    Article  Google Scholar 

  • Buard E (2013) Dynamiques des interactions espèces-espace: mise en relation des pratiques de déplacement des populations d’herbivores et de l’évolution de l’occupation du sol dans le parc de Hwange (Zimbabwe). PhD thesis, Panthéon-Sorbonne University, Paris, 395 pp

    Google Scholar 

  • Chambre d’Agriculture de Charente-Maritime (2011) Des repères pour faire son bilan fourrager. Agricultures et territoires. (Online) https://fr.scribd.com/document/362617162/Des-Reperes-Pour-Faire-Son-Bilan-Fourrager-1. Accessed 1 Dec 2018

  • Chirat G, Groot J, Messad S, Bocquier F, Ickowicz A (2014) Instantaneous intake rate of free-grazing cattle as affected by herbage characteristics in heterogeneous tropical agro-pastoral landscape. Appl Anim Behav Sci 157:48–60

    Article  Google Scholar 

  • Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5:813–834

    Article  Google Scholar 

  • Corson PJ (2002) Le buffle d’Afrique. Biologie, chasse et mythologie. Editions du Gerfaut, collection Grandes chasses, 264 pp

    Google Scholar 

  • Daycard L (1990) Structure sociale de bovins sauvages de l’île Amsterdam, sud de l’Océan Indien. La Terre et la Vie 45:1–35

    Google Scholar 

  • Delagarde R, Pérez-Prieto LA (2016) Effets de la biomasse et de la quantité d’herbe offerte sur l’ingestion, les performances laitières et le comportement alimentaire des vaches laitières conduites en pâturage tournant: étude par méta-analyse. INRA Prod Anim 29(2):87–102

    Article  Google Scholar 

  • Diskin M (2016) Achieving high reproductive performance in beef herds. Teagasc Beef manual, Chap 22, pp 119–124

    Google Scholar 

  • Dumont B (2009) Comportement alimentaire des herbivores et dynamique des prairies. In: Boissy A, Pham-Delègue M-H, Baudoin C (eds) Éthologie appliquée. Comportements animaux et humains, questions de société, Chap 5. Edition Quae, Versailles, pp 79–88

    Google Scholar 

  • Dumont B, Boissy A (1999) Relations sociales et comportement alimentaire au pâturage. INRA Prod Anim 12(1):3–10

    Google Scholar 

  • Dumont B, Hill D (2004) Spatialy explicit models of group foraging by herbivores: what can agent-based models offer? Anim Res 53:419–428

    Article  Google Scholar 

  • Fellah Trade (2018) Elevage bovin à l’engraissement. (On-line) https://www.fellah-trade.com/ressources/pdf/Elevage_bovins_engraissement.pdf. Accessed Dec 1 2018

  • Freer M, Moore AD, Donnelly JR (1991) GRAZPLAN: Decision support systems for Australian grazing enterprises-II. The animal biology model for feed intake, production and reproduction and the GrazFeed DSS. Agric Syst 54(I):17–126

    Google Scholar 

  • Fust P, Schlecht E (2018) Integrating spatio-temporal variation in resource availability and herbivore movements into rangeland management: RaMDry–an agent-based model on livestock feeding ecology in a dynamic, heterogeneous, semi-arid environment. Ecol Model 369:13–41

    Article  Google Scholar 

  • Gauthier D, Coulaud G, Varo H, Thimonier J (1984) Durée de l’anoestrus post-partum et fertilité de la vache créole en climat tropical: influence de la saison de mise bas et de la variation du poids vif. Ann Zootechnie, INRA/EDP Sci 33(2):235–244

    Google Scholar 

  • Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768

    Article  Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke H-H, Weiner J, Wiegand T, DeAngelis DL (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310(5750):987–991

    Article  Google Scholar 

  • Humphries NE, Sims DW (2014) Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. J Theor Biol 358:179–193

    Article  Google Scholar 

  • Ibe OC (2013) Elements of random walk and diffusion processes. Wiley series in Operations Research and Management Science. Wiley, Hoboken, NJ, USA

    Book  Google Scholar 

  • INRA (1988) Tables de l’alimentation des bovins, ovins & caprins, 1902 pp

    Google Scholar 

  • Johnson IR (2008) Biophysical pasture model documentation: model documentation for DairyMod, EcoMod and the SGS Pasture model. IMJ Consultants, Dorrigo, NSW, Australia, p 144

    Google Scholar 

  • Kennedy M, Gray RD (1993) Can ecological theory predict the distribution of foraging animals? A critical analysis of experiments on the ideal free distribution. Oikos 68(1):158–166

    Article  Google Scholar 

  • Lesel R (1969) Étude d’un troupeau de bovins sauvages vivant sur l’île d’Amsterdam. Rev Elev Med Vet Pays Trop 22(1):107–125

    Article  CAS  Google Scholar 

  • Martin BT, Zimmer EI, Grimm V, Jager T (2012) Dynamic energy budget theory meets individual-based modelling: a generic and accessible implementation. Methods Ecol Evol 3:445–449

    Article  Google Scholar 

  • Martin J, Benhamou S, Yoganand K, Owen-Smith N (2015) coping with spatial heterogeneity and temporal variability in resources and risks: adaptive movement behaviour by a large grazing herbivore. PLoS ONE 26:1–19

    Google Scholar 

  • Mayer DG, McKeon GM, Moore AD (2012) Prediction of mortality and conception rates of beef breeding cattle in northern Australia. Anim Prod Sci 52:329–337

    Article  Google Scholar 

  • McGarigal K (2015) Fragstats help. Department of Environmental Conservation, LandEco Consulting and University of Massachusetts, Amherst, USA, 182 pp

    Google Scholar 

  • Meyer C (2018) Dictionnaire des Sciences Animales, Cirad, Montpellier, France. (On-line) http://dico-sciencesanimales.cirad.fr. Accessed 1 Dec 2018

  • Miller ML, Ringelman KM, Eadie JM, Schank JC (2017) Time to fly: a comparison of marginal value theorem approximations in an agent-based model of foraging waterfowl. Ecol Model 351:77–86

    Article  Google Scholar 

  • Moritz M, Hamilton IM, Yoak AJ, Scholte P, Cronley J, Maddock P, Pi H (2015) Simple movement rules result in ideal free distribution of mobile pastoralists. Ecol Model 305:54–63

    Article  Google Scholar 

  • Ng J (2001) Bos taurus. Animal Diversity Web (On-line) https://animaldiversity.org/accounts/Bos_taurus/. Accessed 29 Nov 2018

  • Nisbet RM, Martin BT, de Roos AM (2016) Integrating ecological insight derived from individual-based simulations and physiologically structured population models. Ecol Model 326:101–112

    Article  Google Scholar 

  • Petit M (1979) Effet du niveau d’alimentation à la fin de la gestation sur le poids à la naissance des veaux et leur devenir. Annales de biologie animale, biochimie, biophysique 19(1B):277–287

    Article  Google Scholar 

  • Pierce GJ, Ollason JG (1987) Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49(1):111–117

    Article  Google Scholar 

  • Russel S, Norvig P (2010) Artificial intelligence. A modern approach, 3rd edn. Pearson Education Inc, New York, NJ, USA, 1132 pp

    Google Scholar 

  • Rütters KH, O’Neil RV, Hunsaker CT, Wickham JD, Yankee DH, Timmins SP, Jones KB, Jackson BL (1995) A factor analysis of landscape pattern and structure metrics. Landscape Ecol 10(1):23–39

    Article  Google Scholar 

  • Schwarzmueller F, Hulthen A, Murray J, Parry H (2017) Spatially-explicit modelling of ecological processes in complex agricultural landscapes: connecting ‘artificial’ landscapes with ‘reality’. In: 22nd international congress on modelling and simulation. Modsim 2017, Hobart, Tasmania, Australia, 3–8 Dec 2017

    Google Scholar 

  • Sinervo B (1997) Optimal foraging theory: constraints and cognitive processes. In: Behavioral ecology, pp 105–130. University of California, Santa Cruz

    Google Scholar 

  • Vacquié L, Houet T, Sheeren D, de Munnik N, Roussel V, Waddle J (2016) Adapting grazing practices to limit the reforestation of mountainous summer pastures: a process-based approach. Environ Model Softw 84:395–411

    Article  Google Scholar 

  • Valls-Fox H (2015) To drink or not to drink? The influence of resource availability on elephant foraging and habitat selection in a semi-arid savanna, 158 pp. Ph.D. thesis, University of Montpellier

    Google Scholar 

  • Vayssières J, Bocquier F, Lecomte P (2009) Gamede: a global activity model for evaluating the sustainability of dairy enterprises. Part II–interactive simulation of various management strategies with diverse stakeholders. Agric Syst 101(3):139–151

    Google Scholar 

  • Whiting TL, Postey RC, Chestley ST, Wruck GC (2012) Explanatory model of cattle death by starvation in Manitoba: Forensic evaluation. Can Vet J 53:1173–1180

    PubMed  PubMed Central  Google Scholar 

  • Wilensky U (1999) NetLogo, http://ccl.northwestern.edu/netlogo. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL

Download references

Acknowledgements

This work has been achieved while I was at the SELMET research unit in Montpellier (France). I am indebted towards several colleagues who provided me (often through informal discussions) with information, ideas, advices, data, documentation and suggestions which helped me to render my model more relevant. They are Olivier Bonnet, Jean-Marie Capron, Laurence Flori, Myriam Grillot, Lionel Julien, Mathieu Lesnoff, Marie-Odile Nozières, Eric Vall and Hugo Valls-Fox. However, all the modelling choices, parameter assignments, model implementation and simulations presented in this article remain of my own responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Guerrin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guerrin, F. (2020). Agent-Based Modelling of a Simple Synthetic Rangeland Ecosystem. In: Mirschel, W., Terleev, V., Wenkel, KO. (eds) Landscape Modelling and Decision Support. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-37421-1_10

Download citation

Publish with us

Policies and ethics