Skip to main content

Artificial Neural Networks for the Study of Cosmic Rays

  • Conference paper
  • First Online:
Human-Computer Interaction (HCI-COLLAB 2019)

Abstract

In this paper, we use artificial neural networks (ANNs) techniques to reconstruct the mass composition of high energy cosmic rays. We train artificial neural networks using a high-performance computing cluster with 12 Nvidia Tesla V100 GPUs from the Laboratorio Nacional de Supercómputo del Sureste de México (LNS), and a database of approximately 4.8 million Monte Carlo (MC) simulations of extensive air showers (EAS) using the hadronic interaction model Sibyll 2.3 with two primaries: Protons and Irons, between the energy ranges of 1017 to 1019 eV. The longitudinal development profile of EAS produced by ultra-high energy cosmic rays carries physical information related to the interaction properties of the primary particles with atmospheric nuclei. We extract from the MC values of the longitudinal profile of air showers trough atmospheric depth on different energy ranges, the variable called Xmax (depth of EAS maximum development), which is strongly correlated with the composition of the primary cosmic ray, in order to predict Xmax values for very high-energy cosmic rays by using ANNs. These methods can be used to train a neural network with real EAS events and predict outcomes where statistical limitations with normal means cannot say much.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dunn, W.L., Shultis, J.K.: The basis of Monte Carlo. Explor. Monte Carlo Methods 21–46 (2012). https://doi.org/10.1016/b978-0-444-51575-9.00002-6

    Chapter  Google Scholar 

  2. Abu-Zayyad, T., et al.: The cosmic-ray energy spectrum observed with the surface detector of the telescope array experiment. Astrophys. J. Lett. 768(1), L1 (2013). https://doi.org/10.1088/2041-8205/768/1/l1

    Article  Google Scholar 

  3. Carvalho Jr., W.R., Alvarez-Muñiz, J.: Determination of cosmic-ray primary mass on an event-by-event basis using radio detection. Astropart. Phys. 109, 41–49 (2019). https://doi.org/10.1016/j.astropartphys.2019.02.005

    Article  Google Scholar 

  4. Gaisser, T.K., Hillas, A.M.: Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers. In: Proceedings 15th International Cosmic Ray Conference, vol. 8, pp. 353–357 (1977)

    Google Scholar 

  5. Erdmann, M., Glombitza, J., Walz, D.: A deep learning-based reconstruction of cosmic ray-induced air showers. Astropart. Phys. 97, 46–53 (2018). https://doi.org/10.1016/j.astropartphys.2017.10.006

    Article  Google Scholar 

  6. Guillén, A., et al.: Deep learning techniques applied to the physics of extensive air showers. Astropart. Phys. 111, 12–22 (2019). https://doi.org/10.1016/j.astropartphys.2019.03.001

    Article  Google Scholar 

  7. Paschalis, P., Sarlanis, C., Mavromichalaki, H.: Artificial neural network approach of cosmic ray primary data processing. Solar Phys. 282(1), 303–318 (2012). https://doi.org/10.1007/s11207-012-0125-3

    Article  Google Scholar 

  8. Bergmann, T., et al.: One-dimensional hybrid approach to extensive air shower simulation. Astroparticle Phys. 26(6), 420–432 (2007). https://doi.org/10.1016/j.astropartphys.2006.08.005

    Article  Google Scholar 

  9. Pierog, T., et al.: First results of fast one-dimensional hybrid simulation of EAS using conex. Nuclear Phys. B – Proc. Suppl. 151(1), 159–162 (2006). https://doi.org/10.1016/j.nuclphysbps.2005.07.029

    Article  Google Scholar 

  10. Ahn, E., Engel, R., Gaisser, T.K., Lipari, P., Stanev, T.: Cosmic ray interaction event generator SIBYLL 2.1. Phys. Rev. D 80(9), 094003 (2009). https://doi.org/10.1103/physrevd.80.094003

    Article  Google Scholar 

  11. Laboratorio Nacional de Supercómputo del Sureste de México - LNS. Benemérita Universidad Autónoma de Puebla (n.d.). http://www.lns.org.mx/

  12. Brownlee, J.: Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras. Machine Learning Mastery (2016)

    Google Scholar 

  13. Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classification (2003). http://ntur.lib.ntu.edu.tw/bitstream/246246/2006092712291477314/1/guide.pdf

  14. Stathakis, D.: How many hidden layers and nodes? Int. J. Remote Sens. 30(8), 2133–2147 (2009). https://doi.org/10.1080/01431160802549278

    Article  Google Scholar 

  15. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.: On large-batch training for deep learning: generalization gap and sharp minima (2016). https://arxiv.org/abs/1609.04836

Download references

Acknowledgments

The authors thankfully acknowledge computer resources, technical advice and support provided by Laboratorio Nacional de Supercómputo del Sureste de México (LNS), a member of the CONACYT national laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Varela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela, E., Gabriel, I., Quiroz, A., Báez, L.A., Salazar, H., Villaseñor, L. (2019). Artificial Neural Networks for the Study of Cosmic Rays. In: Ruiz, P., Agredo-Delgado, V. (eds) Human-Computer Interaction. HCI-COLLAB 2019. Communications in Computer and Information Science, vol 1114. Springer, Cham. https://doi.org/10.1007/978-3-030-37386-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37386-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37385-6

  • Online ISBN: 978-3-030-37386-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics