Skip to main content

Setting the Scene

Abstract

Fungi are a keystone component of all ecosystems on earth and have shaped the structure and functioning of nature for eons. Their body is made up of an interwoven mass of threadlike filaments, individually called hyphae and altogether known as mycelium. When fungi form spore-forming structures, the so-called mushrooms, these are also built up of hyphae. The three known trophic groups of fungi have had a fundamental functional diversity in the development of life as we know it. The so-called saprotrophs use the complex dead materials of plants, animals, and microorganisms, including other fungi, as their source of energy—playing a crucial role in nutrient recycling in nature. Mycorrhizal fungi, which establish symbiotic relationships with the roots of plants, have gone hand in hand with plants in the colonization of life on land environments since more than 400 million years. Ectomycorrhizal fungi, in particular, are currently essential in maintaining forest masses worldwide since they establish mutualistic relationships with trees and shrubs mainly. According to the recently named Read’s rule, they dominate ecosystems with low mineralization rates in high-latitude regions with cold and dry climates. Furthermore, they have also been considered the earth’s natural internet, or ‘wood wide web’, because they connect plants and enable them to share nutrients, water, and signal compounds among individuals and species. These networks also help stocking carbon in organic forms from the atmosphere, contributing to climate regulation. Some fungi also establish parasitic relationships with plants and animals, working as an evolutionary force and a selection pressure factor of paramount importance in these groups of living organisms. On top of this ecological and evolutionary relevance, the reproductive structures of fungi, the mushrooms, have shapes and colours that have always fascinated humans. Since early human history, mushrooms have also been an important source of food, medicine, and ceremonial use, all around the world. They also cause death or disease, since deadly and poisonous species exist. Nowadays, they are an important source for the search of new antibiotics, enzymes with industrial use, bioremediation, biofuels, cosmetics, inks, and dyes. In this introductory chapter, we will first describe some remarkable ecological facts related to mushrooms, including members of the three trophic groups previously mentioned. Then, we will provide evidences of the ancient relationships between mushrooms and humans; and, finally, we will analyse the relationships between mushrooms, humans, and nature in different parts of the world, describing and illustrating different realities in five continents.

Keywords

  • Edible mushrooms
  • Ectomycorrhiza
  • Ethnomycology
  • Mycology
  • Climate change
  • Wild mushrooms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37378-8_1
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   139.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-37378-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   179.99
Price excludes VAT (USA)
Hardcover Book
USD   179.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7

References

  • Aguilera E (2016) Hongos de El Salvador. http://elsyaguilera.blogspot.com/2016/06/hongos-de-el-salvador.html

  • Averill C, Hawkes CV (2016) Ectomycorrhizal fungi slow soil carbon cycling. Ecol Lett 19:937–947

    PubMed  CrossRef  Google Scholar 

  • Ayuso-Fernández I, Ruiz-Dueñas FJ, Martínez AT (2018) Evolutionary convergence in lignin-degrading enzymes. Proc Natl Acad Sci U S A 115:6428–6433

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Bostock J, Riley HT (1855) The natural history of Pliny. Henry G. Bohn, London

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    CrossRef  PubMed  Google Scholar 

  • Brundrett MC, Tedersoo L (2018) Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol 220:1108–1115

    PubMed  CrossRef  Google Scholar 

  • Buller AR (1914) The fungus lore of the Greeks and Romans. Trans Br Mycol Soc 5:21–66

    CrossRef  Google Scholar 

  • Bulman SR, Visnovski SB, Hall IR, Guerin-Laguette A, Wang Y (2010) Molecular and morphological identification of truffle-producing Tuber species in New Zealand. Mycol Progress 9:205–214. https://doi.org/10.1007/s11557-009-0626-0

    CrossRef  Google Scholar 

  • Buyck B (1994) Ubwoba: les champignons comestibles de l’ouest du Burundi. Administration Générale de la Coopération au Développement, Bruxelles

    Google Scholar 

  • Buyck B, Kauff F, Cruaud C, Hofstetter V (2013) Molecular evidence for novel Cantharellus (Cantharellales, Basidiomycota) from tropical African miombo woodland and a key to all tropical chanterelles. Fungal Divers 58:281–298

    CrossRef  Google Scholar 

  • Cao Y, Wu SH, Dai YC (2012) Species clarification of the prize medicinal Ganoderma mushroom “Lingzhi”. Fungal Divers 56:49–62

    Google Scholar 

  • Comandini O, Rinaldi AC, Kuyper TW (2012) Measuring and estimating ectomycorrhizal fungal diversity: a continuous challenge. In: Pagano M (ed) Mycorrhiza: occurrence in natural and restored environments. Nova Science Publishers, New York, pp 165–200

    Google Scholar 

  • Cooper J (2012) Mycological Notes 19: Agrocybe parasitica and related species. https://www.funnz.org.nz/sites/default/files/MycNotes19-AgrocybeParasitica_2.pdf

  • Cui YY, Feng B, Wu G et al (2015) Porcini mushrooms (Boletus sect. Boletus) from China. Fungal Divers 82:189–212

    Google Scholar 

  • Dai YC, Cui BK (2011) Fomitiporia ellipsoidea has the largest fruiting body among the fungi. J Fungal Biol 115:813–814

    CrossRef  Google Scholar 

  • Dai YC, Zhou LW, Yang ZL et al (2010) A revised checklist of edible fungi in China. Mycosystema 29:1–21

    Google Scholar 

  • Dawson J, Lucas R (2000) Nature guide to the New Zealand forest. Random House, Auckland, New Zealand. 312 pp

    Google Scholar 

  • De Kesel A, Kasongo B, Degreef J (2017) Champignons comestibles du Haut-Katanga (R.D. Congo). ABC Taxa 17:296. (In French)

    Google Scholar 

  • Degreef J (1992) Les champignons comestibles, leur importance pour les populations africaines. Défis Sud 1992:38–39. (In French)

    Google Scholar 

  • Del Olmo-Ruiz M, García-Sandoval R et al (2017) Current knowledge of fungi from Neotropical montane cloud forests: distributional patterns and composition. Biodivers Conserv 26:1919. https://doi.org/10.1007/s10531-017-1337-5

    CrossRef  Google Scholar 

  • Delgado S (2010) Diversidad y abundancia de macromicetos del bosque Las Lajas, del área natural complejo San Marcelino, Santa Ana, Sonsonate, El Salvador. Thesis from Universidad de El Salvador. http://ri.ues.edu.sv/id/eprint/847/1/10136599.pdf

  • Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588

    CAS  CrossRef  Google Scholar 

  • Encyclopaedia Britannica (2019) Mushroom (last updated 1 Aug 2019). www.britannica.com/science/mushroom. Accessed 14 Aug 2019

  • Ferguson BA, Dreisbach TA, Parks CG, Filip GM, Schmitt CL (2003) Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the Blue Mountains of northeast Oregon. Can J For Res 33:612–623

    Google Scholar 

  • Flores R, Comandini O, Rinaldi AC (2012) A preliminary checklist of macrofungi of Guatemala, with notes on edibility and traditional knowledge. Mycosphere 3:1–21

    CrossRef  Google Scholar 

  • Floudas D et al (2012) The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336:1715–1719

    CAS  PubMed  CrossRef  Google Scholar 

  • Frost P (1996) The ecology of Miombo woodlands. In: Campbell BM (ed) The Miombo in transition: woodlands and welfare in Africa. Center for International Forestry Research, Bogor, Indonesia, pp 11–55

    Google Scholar 

  • Ge ZW, Jacobs A, Vellinga EC, Sysouphanthong P, van der Walt R, Lavorato C, An Y-F, Yang ZL (2018) A multi-gene phylogeny of Chlorophyllum (Agaricaceae, Basidiomycota): new species, new combination and infrageneric classification. Mycokeys 32:65–90

    CrossRef  Google Scholar 

  • Geng LY, Wang XH, Yu FQ et al (2009) Mycorrhizal synthesis of Tuber indicum with two indigenous hosts, Castanea mollissima and Pinus armandii. Mycorrhiza 19:461–467

    PubMed  CrossRef  Google Scholar 

  • Guerin-Laguette A (2008) La trufficulture en Nouvelle-Zélande: 20 ans déjà. [The truffle cultivation in NZ: 20 years already]. Proceedings of the international conference ‘La culture de la truffe dans le monde [The truffle cultivation in the world], In French with English abstract, (ed. INRA and Le Causse Corrézien), Brive-la-Gaillarde, France, 2 February 2007, pp 151–162

    Google Scholar 

  • Guzmán G (2008) Hallucinogenic mushrooms in Mexico: an overview. Econ Bot 62:404–412

    CrossRef  Google Scholar 

  • Halling R, Mueller G (2002) Agaric and boletes in neotropical oakwoods. In: Watling R, Farkland J et al (eds) Tropical mycology, Macromycetes, vol 1. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Härkönen M, Niemelä T, Mwasumbi L (2003) Tanzanian mushrooms. Edible, harmful and other fungi. Norrlinia 10:1–200

    Google Scholar 

  • Härkönen M, Niemelä T, Mbindo K, Kotiranta H, Piearce G (2015) Zambian mushrooms and mycology. Norrlinia 29:1–208

    Google Scholar 

  • Hassett MO, Fischer MWF, Money NP (2015) Mushrooms as rainmakers: how spores act as nuclei for raindrops. PLoS One 10:e0140407. https://doi.org/10.1371/journal.pone.0140407

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Heim R, Wasson RG (1958) Les champignons hallucinogènes du Mexique - Etudes ethnologiques, taxinomiques, biologiques, physiologiques et chimiques. Archives du Muséum National d’Histoire Naturelle 6:1–445

    Google Scholar 

  • Hernández-Santiago F, Pérez-Moreno J, Xoconostle-Cázares B, Almaraz-Suárez JJ, Ojeda-Trejo E, Mata G, Díaz-Aguilar I (2016) Traditional knowledge and use of wild mushrooms by Mixtecs or Ñuu savi, the people of the rain, from Southeastern Mexico. J Ethnobiol Ethnomed 12(35):1–22

    Google Scholar 

  • Hernández-Santiago F, Martínez-Reyes M, Pérez-Moreno J et al (2017) Pictographic representation of the first dawn and its association with entheogenic mushrooms in a 16th century Mixtec Mesoamerican Codex. Sci Fungorum 46:19–28

    Google Scholar 

  • Hofmann A, Heim R, Brack A et al (1958) Psilocybin, ein psychotroper wirkcstoff aus dem Mexikanishchen Rauchpilz Psilocybe mexicana Heim. Experientia 14:107–109

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnston PR (2009) Causes and consequences of changes to New Zealand’s fungal biota. N Z J Ecol 34:175–184

    Google Scholar 

  • Kim SH, Jakhar R, Kang SC (2015) Apoptotic properties of polysaccharide isolated from fruiting bodies of medicinal mushroom Fomes fomentarius in human lung carcinoma cell line. Saudi J Biol Sci 22:484–490

    CAS  PubMed  CrossRef  Google Scholar 

  • Kuhnlein HV, Turner NJ (1991) Traditional plant foods of Canadian indigenous peoples. Food Nutr Hist Anthropol 8:1–533

    Google Scholar 

  • Kuo M, Dewsbury DR, O’Donnell K, Carter MC, Rehner SA, Moore JD, Moncalvo JM, Canfield SA, Stephenson SL, Methven AS, Volk TJ (2012) Taxonomic revision of true morels (Morchella) in Canada and the United States. Mycologia 104:1159–1177

    PubMed  CrossRef  Google Scholar 

  • López-García A, Jiménez-Ruiz M, Pérez-Moreno J (2017) Vocablos relacionados con el recurso micológico en el idioma de la cultura chinanteca de la Sierra Norte del estado de Oaxaca, México. Sci Fungorum 46:9–18. (In Spanish)

    Google Scholar 

  • Marineros L, Vega H, Bejarano L (2015) Contribución al conocimiento de los hongos comestibles en las regiones Lenca y Chortí del occidente de Honduras. BIOMA 35:35–47. http://www.ethnobiology.net/wp-content/uploads/Contribucio%CC%81n-al-conocimiento-de-los-hongos-comestibles-en-las-regiones-lenca-y-chorti%CC%81-del-occidente-de-Honduras.pdf. Accessed 7 May 2019

    Google Scholar 

  • Michelot D, Melendez-Howell LM (2003) Amanita muscaria: chemistry, biology, toxicology, and ethnomycology. Mycol Res 107:131–146

    CAS  PubMed  CrossRef  Google Scholar 

  • Molina R, O’Dell T, Luoma D, Amaranthus M, Castellano M, Russell K (1993) Biology, ecology, and social aspects of wild edible mushrooms in the forests of the Pacific Northwest: a preface to managing commercial harvest. Gen. Tech. Rep. PNW-GTR-309. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

    Google Scholar 

  • Money NP (2011) Mushroom. Oxford University Press, Oxford, UK

    CrossRef  Google Scholar 

  • Morris B (1984) Macrofungi of Malawi. Some ethnobotanical notes. Bull Br Mycol Soc 18:48–57

    CrossRef  Google Scholar 

  • Mueller G, Halling R, Carranza J et al (2006) Saprotrophic and ectomycorrhizal macrofungi of Costa Rican oak forest. In: Kapelle M (ed) Ecology and conservation of neotropical Montane oak forest. Springer, Berlin, pp 55–68

    CrossRef  Google Scholar 

  • Murphy EC, Russell JC, Broome KG, Ryan GJ, Dowding JE (2019) Conserving New Zealand’s native fauna: a review of tools being developed for the Predator Free 2050 programme. J Ornithol 160:883–892. https://doi.org/10.1007/s10336-019-01643-0

    CrossRef  Google Scholar 

  • Nagy LG, Riley R, Tritt A et al (2016) Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol Biol Evol 33:959–970

    CAS  PubMed  CrossRef  Google Scholar 

  • Orlovich DA, Cairney JWG (2004) Ectomycorrhizal fungi in New Zealand: current perspectives and future directions. N Z J Bot 42:721–738

    CrossRef  Google Scholar 

  • Osemwegie OO, Okhuoya AJ, Dani AT (2014) Ethnomycological conspectus of West African mushrooms: an awareness document. Adv Microbiol 4:39–54

    CrossRef  Google Scholar 

  • Pegler DN, Piearce GD (1980) The edible mushrooms of Zambia. Kew Bull 35:475–491

    CrossRef  Google Scholar 

  • Peintner U, Pöder R (2000) Ethnomycological remarks on the Iceman’s fungi. In: Bortenschlager S, Oeggl K (eds) The Iceman and his natural environment. The man in the ice, vol 4. Springer, Vienna, pp 143–150

    CrossRef  Google Scholar 

  • Pérez-Moreno J, Martínez-Reyes M (2014) Edible ectomycorrhizal mushrooms: biofactories for sustainable development. In: Guevara-Gonzalez R, Torres-Pacheco I (eds) Biosystems engineering: biofactories for food production in the century XXI. Springer, Cham, pp 151–233

    CrossRef  Google Scholar 

  • Pérez-Moreno J, Read DJ (2004) Los hongos ectomicorrízicos, lazos vivientes que conectan y nutren a los árboles en la naturaleza. Interciencia 29:239–247

    Google Scholar 

  • Pérez-Moreno J, Lorenzana Fernández A, Carrasco Hernández V, Yescas-Pérez A (2010) Los hongos comestibles silvestres del Parque Nacional Izta-Popo, Zoquiapan y Anexos. Colegio de Postgraduados, SEMARNAT, CONACYT, Texcoco, Mexico. (In Spanish)

    Google Scholar 

  • Piepenbring M (2013) References to literature including records of species of fungi in Panama. Compiled by Meike Piepenbring. Smithsonian Tropical Research Institute, Panama. https://biogeodb.stri.si.edu/fungi. Accessed 25 Sept 2019

  • Piepenbring M, Caballero E, Fournier J et al (2011) Pioneer forays for fungi in the Darién Province in Eastern Panama: quintuplicating the knowledge on fungi in this area by five days of fieldwork. Biodivers Conserv 20:2511. https://doi.org/10.1007/s10531-011-0085-1

    CrossRef  Google Scholar 

  • Pilz D, Norvell L, Danell E, Molina R (2003) Ecology and management of commercially harvested chanterelle mushrooms. Gen. Tech. Rep. PNW-GTR-576. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

    CrossRef  Google Scholar 

  • Pilz D, McLain R, Alexander S, Villarreal-Ruiz L, Shannon B, Wurtz TL, Parks CG, McFarlane E, Baker B, Molina R, Smith JE (2007) Ecology and management of morels harvested from the forests of western North America. Gen. Tech. Rep. PNW-GTR-710. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, OR

    Google Scholar 

  • Pirozynski KA, Dalpé Y (1989) Geological history of the Glomaceae with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Pleszczyńska M, Lemieszek MK, Siwulski M et al (2017) Fomitopsis betulina (formerly Piptoporus betulinus): the Iceman’s polypore fungus with modern biotechnological potential. World J Microbiol Biotechnol 33:83. https://doi.org/10.1007/s11274-017-2247-0

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  • Power RC, Salazar-García DC et al (2015) Microremains from El Mirón Cave human dental calculus suggest a mixed plant-animal subsistence economy during the Magdalenian in Northern Iberia. J Archaeol Sci 60:39–46

    CrossRef  Google Scholar 

  • Rammeloo J, Walleyn R (1993) The edible fungi of Africa south of the Sahara. Scripta Botanica Belgica 5:1–62

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    CrossRef  Google Scholar 

  • Read DJ, Pérez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems–a journey towards relevance? New Phytol 157:475–492

    CrossRef  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  PubMed  CrossRef  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Riedlinger TJ (ed) (1990) The sacred mushroom seeker: Essays for R. Gordon Wasson, Historical, ethno- and economic botany series, vol 4. Discorides, Portland

    Google Scholar 

  • Ruan-Soto F (2018) Sociodemographic differences in the cultural significance of edible and toxic mushrooms among Tsotsil towns in the Highlands of Chiapas, Mexico. J Ethnobiol Ethnomed 14:32. https://doi.org/10.1186/s13002-018-0232-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Saar M (1991a) Fungi in Khanty folk medicine. J Ethnopharmacol 31:175–179

    CAS  PubMed  CrossRef  Google Scholar 

  • Saar M (1991b) Ethnomycological data from Siberia and northeast Asia on the effect of Amanita muscaria. J Ethnopharmacol 31:157–173

    CAS  PubMed  CrossRef  Google Scholar 

  • Sarmiento E, Fontecha G (2015) Conocimiento tradicional de los hongos en el occidente de Honduras. Ciencia y Tecnología 13:19–29. https://doi.org/10.5377/rct.v0i13.1710. Accessed 7 May 2019

    CrossRef  Google Scholar 

  • Smith P, Allen Q (2004) Field guide to the trees and shrubs of the miombo woodlands. Royal Botanic Gardens, Kew

    Google Scholar 

  • Smith SA, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Steidinger BS, Crowther TW et al (2019) Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569:404–413

    CAS  PubMed  CrossRef  Google Scholar 

  • Stevens WD et al (eds) (2001) Flora of Nicaragua, vol 85(1). Botanical Garden Press, Missouri. http://www.mobot.org/MOBOT/research/nicaragua/vegetacion.shtml

    Google Scholar 

  • Stolze-Rybczynski JL, Cui Y et al (2009) Adaptation of the spore discharge mechanism in the Basidiomycota. PLoS One 4:41

    CrossRef  CAS  Google Scholar 

  • Tang LP, Yang ZL, Zeng NK et al (2015) Atlas of higher fungi from Lancang river valley. Yunnan Science and Technology Press, Kunming

    Google Scholar 

  • Taylor TN, Osborn JM (1996) The importance of fungi in shaping the paleoecosystem. Rev Palaeobot Palynol 90:249–262

    CrossRef  Google Scholar 

  • Toledo J (2013) Inventario de Macrohongos del Área Natural Protegida Parque del Bicentenario El Espino – Bosque Los Pericos. Salvanatura, El Salvador. http://www.salvanatura.org/wp-content/uploads/2015/08/INVENTARIO-HONGOS-_PDB_MLQ-2012.pdf. Accessed 7 May 2019

  • Vega H (2018) El mundo de los Hongos. https://www.researchgate.net/publication/323663090_Presentacion_sobre_los_hongos_comestibles_de_la_zona_Lenca_de_Honduras_especificamente_en_los_alrededores_del_PNM_Celaque

  • Vega A, de León J (2018) Hongos Comestibles de Panamá. Silvestres, Cultivados y su potencial de Industrialización. Centro de Investigación en Recursos Naturales, Universidad Autónoma de Chiriquí. http://alaccta.org/wp-content/uploads/2018/04/7-Hongos-Comestibles-de-Panam%C3%A1.-ALACCTA-2018.pdf

  • Verbeken A, Walleyn R (2010) Monograph of Lactarius in tropical Africa. Fungus flora of tropical Africa. National Botanic Garden, Belgium

    Google Scholar 

  • Wallis GP, Trewick SA (2009) New Zealand phylogeography: evolution on a small continent. Mol Ecol 18:3548–3580

    PubMed  CrossRef  Google Scholar 

  • Walter R, Buckley H, Jacomb C, Matisoo-Smith E (2017) Mass migration and the Polynesian settlement of New Zealand. J World Prehist 30:351–376. https://doi.org/10.1007/s10963-017-9110-y

    CrossRef  Google Scholar 

  • Wang XH, Liu PG (2002) Resources investigation and studies on the wild commercial fungi in Yunnan. Biodivers Sci 10:318–325

    Google Scholar 

  • Wang L, Yang ZL (2006) Wild edible fungi of the Hengduan Mountains, southwestern China. In: Christoph K, Yang YP, Weyerhäuser H et al (eds) The sustainable harvest of non-timber forest products in China. Sino-German Symposium Proceedings. Sino-German Center, Beijing, pp 58–65

    Google Scholar 

  • Wang Y, Sinclair L, Hall IR, Cole ALJ (1995) Boletus edulis sensu lato: a new record for New Zealand. N Z J Crop Hortic Sci 23:227–231

    CrossRef  Google Scholar 

  • Wang XH, Liu PG, Yu FQ (2004) Color atlas of wild commercial mushrooms in Yunnan. Yunnan Science and Technology Press, Kunming

    Google Scholar 

  • Wang R, Guerin-Laguette A, Huang LL, Wang XH, Butler R, Wang Y, Yu FQ (2019) Mycorrhizal syntheses between Lactarius spp. section Deliciosi and Pinus spp. and effects of grazing insects in Yunnan, China. Can J For Res 49:616–627. https://doi.org/10.1139/cjfr-2018-0198

    CrossRef  Google Scholar 

  • Wasson RG (1957) Seeking the magic mushroom. Life Magazine, June 10, New York

    Google Scholar 

  • Wasson RG (1980) The wondrous mushroom: Mycolatry in Mesoamerica. McGraw-Hill, New York

    Google Scholar 

  • Wasson VP, Wasson RG (1957) Mushrooms, Russia and history. Pantheon Books, New York

    Google Scholar 

  • Wasson G, Cowan F, Rhodes W (1974) María Sabina and her Mazatec mushroom velada, Ethnomicological studies, vol 3. Harcourt Brace Jovanovich, New York

    Google Scholar 

  • White JC (1983) The vegetation of Africa. A descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. UNESCO, Paris, p 356

    Google Scholar 

  • Wu G, Li YC, Zhao K et al (2015) Four new genera of the fungal family Boletaceae. Fungal Divers 81:1–24

    CrossRef  Google Scholar 

  • Wu F, Zhou LW, Yang ZL, Bau T, Li TH, Dai YC (2019) Resource diversity of Chinese macrofungi: edible, medicinal and poisonous species. Fungal Divers 98:1–76

    CAS  CrossRef  Google Scholar 

  • Yang ZL (2015) Atlas of the Chinese species of Amanitaceae. Science Press, Beijing

    Google Scholar 

  • Yang XF, Wilkes A, Yang YP et al (2009) Common and privatized: conditions for wise management of matsutake mushrooms in northwest Yunnan Province, China. Ecol Soc 14:30

    CrossRef  Google Scholar 

  • Yu FQ, Liu PG (2005) Species diversity of wild edible mushrooms from Pinus yunnanensis forests and conservation strategies. Biodivers Sci 13:58–69

    CrossRef  Google Scholar 

  • Yun W, Hall IR (2004) Edible ectomycorrhizal mushrooms: challenges and achievements. Can J Bot 82:1063–1073

    CrossRef  Google Scholar 

  • Zan L, Haiying B, Bau T, Liu H, Cui B (2012) An antitumor component from Fomitiporia ellipsoidea. J Microbiol Biotechnol 22:1482–1485

    CAS  CrossRef  Google Scholar 

Download references

Acknowledgements

The credit pictures are as follows: Figs. 1.1a–d and 1.3a–c are from Roberto Flores Arzú; Fig. 1.5c–g are from Annemieke Verbeken; Fig. 1.4d is from Alexander Bondarchuk; Fig. 1.6a–d are from Fu-Qiang Yu; Fig. 1.2c is from Lucila Aragón Carrillo; Fig. 1.2d is from Jorge Manuel Mejia Bojorquez; Fig. 1.3c is from José María González; Fig. 1.3d–f are from José Leonardo García Rodríguez; Fig. 1.7, all photos are by The New Zealand Institute for Plant & Food Research except Fig. 1.7b, courtesy Wang Yun; Fig. 1.7e, courtesy Will Clayton; Fig. 1.7g, h, courtesy Wayne Tewnion; Fig. 1.7i, l, courtesy Vaughan Mabee; Figs. 1.2a, b, 1.4a–c, e, 1.5a, b and 1.6e, f are from Jesús Pérez-Moreno. Alexis Guerin-Laguette is grateful to Nicholas Cummings for helpful suggestions on the Australasia section. Jesús Pérez-Moreno acknowledges the financial support from CONACyT 2018-07-01EXTV and COMECyT EST2018-005 to develop a sabbatical stay at the Kunming Institute of Botany, Kunming, China.

Funding from the CONACyT project “Biotechnologies of highly-prized or bioculturally-important edible ectomycorrhizal mushrooms for reforestation with native Mexican trees using frontier scientific methodologies” is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús Pérez-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., Yu, FQ., Verbeken, A. (2020). Setting the Scene. In: Pérez-Moreno, J., Guerin-Laguette, A., Flores Arzú, R., Yu, FQ. (eds) Mushrooms, Humans and Nature in a Changing World. Springer, Cham. https://doi.org/10.1007/978-3-030-37378-8_1

Download citation