Skip to main content

ECC\(^2\): Error Correcting Code and Elliptic Curve Based Cryptosystem

  • Conference paper
  • First Online:
Book cover Cyberspace Safety and Security (CSS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11982))

Included in the following conference series:

  • 1040 Accesses

Abstract

With the fast development of quantum computation, code-based cryptography arises public concern as a candidate for post quantum cryptography. However, the large key-size becomes a drawback such that the code-based schemes seldom become practical. Algebraic geometry codes was considered to be a good solution to reduce the size of keys, but its special structure results in lots of attacks. In this paper, we propose a public key encryption scheme based on elliptic codes which can resist the known attacks. By choosing the rational points carefully, we build elliptic codes that can resist Minder’s attack. We apply the list decoding algorithm to decryption thus more errors beyond half of the minimum distance of the code could be correct, which is the key point to resist other known attacks for AG code based cryptosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, M., Cid, C., et al.: NTS-KEM, NIST Submission (2017). https://nts-kem.io

  2. Berlekamp, E.R., Mceliece, R.J., Tilborg, H.C.A.V.: On the inherent intractability of certain coding problems. IEEE Trans. Inform. Theory 24(3), 384–386 (1978)

    Article  MathSciNet  Google Scholar 

  3. Bernstein, D.J., Lange, T., Peters, C.: Attacking and defending the McEliece cryptosystem. In: Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 31–46. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88403-3_3

    Chapter  Google Scholar 

  4. Cheng, Q.: Hard problems of algebraic geometry codes. IEEE Trans. Inform. Theory 54(1), 402–406 (2008)

    Article  MathSciNet  Google Scholar 

  5. Couvreur, A., Márquez-Corbella, I., Pellikaan, R.: Cryptanalysis of McEliece cryptosystem based on algebraic geometry codes and their subcodes. IEEE Trans. Inform. Theory 63(8), 5404–5418 (2017)

    Article  MathSciNet  Google Scholar 

  6. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inform. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  Google Scholar 

  7. Faure, C., Minder, L.: Cryptanalysis of the McEliece cryptosystem over hyperelliptic codes. The 11th ACCT, pp. 99–107 (2008)

    Google Scholar 

  8. Goppa, V.D.: Codes associated with divisors. Problemy Peredachi Informatsii. 13(1), 33–39 (1977)

    MathSciNet  MATH  Google Scholar 

  9. Guruswami, V., Sudan, M.: Improved decoding of reed-solomon and algebraic-geometry codes. IEEE Trans. Inform. Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  Google Scholar 

  10. Guruswami, V., Sudan, M.: On representations of algebraic-geometric codes for list decoding, pp. 244–255. Springer, Berlin (2000)

    MATH  Google Scholar 

  11. Hofheinz, D., Hövelmanns, K., Kiltz, E.: A modular analysis of the Fujisaki-Okamoto transformation. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 341–371. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_12

    Chapter  MATH  Google Scholar 

  12. Hoholdt, T., Pellikaan, R.: On the decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory 41(6), 1589–1614 (1995)

    Article  MathSciNet  Google Scholar 

  13. Hoholdt, T., Van Lint, J.H., Pellikaan, R.: Handbook of Coding Theory: Part 1: Algebraic Geometry Codes, pp. 871–961. Elsevier Science Inc., Amsterdam (1998)

    MATH  Google Scholar 

  14. Janwa, H., Moreno, O.: McEliece public key cryptosystems using algebraic-geometric codes. Des. Codes Cryptogr. 8(3), 293–307 (1996)

    Article  MathSciNet  Google Scholar 

  15. Márquez-Corbella, I., Martínez-Moro, E., et al.: Computational aspects of retrieving a representation of an algebraic geometry code. J. Symbolic Computation. 64, 67–87 (2014)

    Article  MathSciNet  Google Scholar 

  16. Márquez-Corbella, I., Martínez-Moro, E., Pellikaan, R.: On the unique representation of very strong algebraic geometry codes. Des. Codes Cryptogr. 70(1–2), 215–230 (2014)

    Article  MathSciNet  Google Scholar 

  17. Mceliece, R.J.: A public-key cryptosystem based on algebraic. Coding Thv. 4244, 114–116 (1978)

    Google Scholar 

  18. McEliece, R.J.: The Guruswami-Sudan Decoding Algorithm for Reed-Solomon Codes. JPL progress report. 42–153 (2003)

    Google Scholar 

  19. Melchor, C.A., Aragon, N., Bettaieb, S., et al.: Hamming Quasi-Cyclic (HQC) (2017). https://pqc-hqc.org

  20. Minder, L.: Cryptography based on Error Correcting Codes. PhD thesis, EPFL, Lausanne (2007)

    Google Scholar 

  21. Misoczki, R., Barreto, P.S.L.M.: Key reduction of McEliece’s cryptosystem using list decoding. 2011 IEEE ISIT, pp. 2681–2685 (2011)

    Google Scholar 

  22. Niebuhr, R., Cayrel, P.L., Bulygin, S., et al.: On lower bounds for information set decoding over Fq. The 2nd SCC, 10, pp. 143–157 (2010)

    Google Scholar 

  23. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob. Control and Inf. Theory 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Pellikaan, R.: On decoding by error location and dependent sets of error positions. Discrete Math. 106, 369–381 (1992)

    Article  MathSciNet  Google Scholar 

  25. Pellikaan, R.: On the efficient decoding of algebraic-geometric codes. In: Camion, P., Charpin, P., Harari, S. (eds.) Eurocode 1992. ICMS, vol. 339, pp. 231–253. Springer, Vienna (1993). https://doi.org/10.1007/978-3-7091-2786-5_20

    Chapter  Google Scholar 

  26. Peters, C.: Information-set decoding for linear codes over F\(_{q}\). In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 81–94. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_7

  27. Prange, E.: The use of information sets in decoding cyclic codes. IEEE Trans. Inform. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  28. Shokrollahi, M.A., Wasserman, H.: List decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory 45(2), 432–437 (1999)

    Article  MathSciNet  Google Scholar 

  29. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. IEEE Symposium on Foundations of Computer Science, pp. 124–134 (1994)

    Google Scholar 

  30. Sidelnikov, V.M., Shestakov, S.O.: On insecurity of cryptosystems based on generalized Reed-Solomon codes. Discrete Math. Appl. 2(4), 439–444 (1992)

    Article  MathSciNet  Google Scholar 

  31. Silverman, J.H.: The arithmetic of elliptic curves. Inventiones Math. 23(3–4), 179–206 (1974)

    MathSciNet  Google Scholar 

  32. Sudan, M.: Decoding of reed solomon codes beyond the error-correction bound. J. Complex. 13(1), 180–193 (1997)

    Article  MathSciNet  Google Scholar 

  33. Wu, X., Siegel, P.H.: Efficient root-finding algorithm with application to list decoding of algebraic-geometric codes. IEEE Trans. Inform. Theory 47(6), 2579–2587 (2001)

    Article  MathSciNet  Google Scholar 

  34. Zhang, F., Liu, S.: Solving ECDLP via list decoding. IACR Cryptology ePrint Archive, Report 2018/795 (2018). https://eprint.iacr.org/2018/795.pdf

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61672550) and the National Key R&D Program of China(2017YFB0802503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangguo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, F., Zhang, Z. (2019). ECC\(^2\): Error Correcting Code and Elliptic Curve Based Cryptosystem. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace Safety and Security. CSS 2019. Lecture Notes in Computer Science(), vol 11982. Springer, Cham. https://doi.org/10.1007/978-3-030-37337-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37337-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37336-8

  • Online ISBN: 978-3-030-37337-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics