Skip to main content

Essential Noninvasive Multimodality Neuromonitoring for the Critically Ill Patient

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2020

Abstract

Through the years, technology has evolved rapidly, along with great developments in medical devices, particularly in the field of neurointensive care. This has allowed us to delve into new levels of detail and precision, which would not be possible with clinical examination alone. Pupillary reflexes, for example, carry considerable weight on prognostication of the brain-injured patient, yet assessment is of a poor quality. With automated infrared pupillometry now available, clinicians are able to assess this reflex quantitatively. Brain ultrasound, developing from transcranial Doppler into transcranial color-coded duplex Doppler ultrasonography, has become of paramount importance in the assessment of intracranial blood flow, early diagnosis of vasospasm, and estimation of cerebral perfusion pressure and intracranial pressure. Moreover, B-mode can enable the physician to visualize space-occupying lesions such as hematomas and midline shift and to monitor the effectiveness of brain-protective medical interventions. Electroencephalography (EEG) is a complex field, and too few intensivists are able to apply it. However, its diagnostic potential for seizures, depth of sedation evaluation, and need for analgesia remains unparalleled. More simple forms of cerebral function monitoring technology can now provide a more simplified version of EEG, allowing us to titrate sedation and analgesia and diagnose subclinical seizure activity during anesthesia or in the ICU. In this chapter, we propose what we consider as essential noninvasive multimodality neuromonitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Meeker M, Du R, Bacchetti P, et al. Pupil examination: validity and clinical utility of an automated pupillometer. J Neurosci Nurs. 2005;37:34–40.

    Article  PubMed  Google Scholar 

  2. Couret D, Boumaza D, Grisotto C, et al. Reliability of standard pupillometry practice in neurocritical care: An observational, double-blinded study. Crit Care. 2016;20:99.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Larson MD, Muhiudeen I. Pupillometric analysis of the ‘absent light reflex’. Arch Neurol. 1995;52:369–72.

    Article  PubMed  CAS  Google Scholar 

  4. Rossetti AO, Rabinstein AA, Oddo M. Neurological prognostication of outcome in patients in coma after cardiac arrest. Lancet Neurol. 2016;15:597–609.

    Article  PubMed  Google Scholar 

  5. Behrends M, Niemann CU, Larson MD. Infrared pupillometry to detect the light reflex during cardiopulmonary resuscitation: a case series. Resuscitation. 2012;83:1223–8.

    Article  PubMed  Google Scholar 

  6. Yokobori S, Wang KKK, Yang Z, et al. Quantitative pupillometry and neuron-specific enolase independently predict return of spontaneous circulation following cardiogenic out-of-hospital cardiac arrest: a prospective pilot study. Sci Rep. 2018;8:15964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Oddo M, Sandroni C, Citerio G, et al. Quantitative versus standard pupillary light reflex for early prognostication in comatose cardiac arrest patients: an international prospective multicentre double-blinded study. Intensive Care Med. 2018;44:2102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cnossen MC, Huijben JA, van der Jagt M, et al. Variation in monitoring and treatment policies for intracranial hypertension in traumatic brain injury: a survey in 66 neurotrauma centers participating in the CENTER-TBI study. Crit Care. 2017;21:233.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manley G, Larson M. Infrared pupillometry during uncal herniation. J Neurosurg Anesthesiol. 2002;14:223–8.

    Article  PubMed  Google Scholar 

  10. Cohen JE, Montero A, Israel ZH. Prognosis and clinical relevance of anisocoria-craniotomy latency for epidural hematoma in comatose patients. J Trauma. 1996;41:120–2.

    Article  PubMed  CAS  Google Scholar 

  11. Lieberman JD, Pasquale MD, Garcia R, Cipolle MD, Mark Li P, Wasser TE. Use of admission Glasgow Coma Score, pupil size, and pupil reactivity to determine outcome for trauma patients. J Trauma. 2003;55:437–42.

    Article  PubMed  Google Scholar 

  12. Ong C, Hutch M, Barra M, Kim A, Zafar S, Smirnakis S. Effects of osmotic therapy on pupil reactivity: quantification using pupillometry in critically ill neurologic patients. Neurocrit Care. 2019;30:307–15.

    Article  CAS  Google Scholar 

  13. Stevens AR, Su Z, Toman E, Belli A, Davies D. Optical pupillometry in traumatic brain injury: neurological pupil index and its relationship with intracranial pressure through significant event analysis. Brain Inj. 2019;33:1032–8.

    Article  PubMed  CAS  Google Scholar 

  14. Jahns FP, Miroz JP, Messerer M, et al. Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury. Crit Care. 2019;23:155.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vassilieva A, Olsen MH, Peinkhofer C, Knudsen GM, Kondziella D. Automated pupillometry to detect command following in neurological patients: a proof-of-concept study. PeerJ. 2019;7:e6929.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Paulus J, Roquilly A, Beloeil H, Théraud J, Asehnoune K, Lejus C. Pupillary reflex measurement predicts insufficient analgesia before endotracheal suctioning in critically ill patients. Crit Care. 2013;17:R161.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Constant I, Nghe MC, Boudet L, et al. Reflex pupillary dilatation in response to skin incision and alfentanil in children anaesthetized with sevoflurane: a more sensitive measure of noxious stimulation than the commonly used variables. Br J Anaesth. 2006;96:614–9.

    Article  PubMed  CAS  Google Scholar 

  18. Wildemeersch D, Baeten M, Peeters N, Saldien V, Vercauteren M, Hans G. Pupillary dilation reflex and pupillary pain index evaluation during general anaesthesia: a pilot study. Rom J Anaesth Intensive Care. 2018;25:19–23.

    PubMed  PubMed Central  Google Scholar 

  19. Sabourdin N, Barrois J, Louvet N, Rigouzzo A. Pupillometry-guided intraoperative remifentanil administration versus standard practice influences opioid use: a randomized study. Anesthesiology. 2017;127:284–92.

    Article  PubMed  CAS  Google Scholar 

  20. Aaslid R, Markwalder TM, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.

    Article  PubMed  CAS  Google Scholar 

  21. Robba C, Simonassi F, Ball L, Pelosi P. Transcranial color-coded duplex sonography fir bedside monitoring of central nervous system infection as a consequence of decompressive craniectomy after traumatic brain injury. Intensive Care Med. 2019;45:1143–4.

    Article  PubMed  Google Scholar 

  22. Robba C, Cardim D, Tajsic T, et al. Non-invasive intracranial pressure assessment in brain injured patients using ultrasound-based methods. Acta Neurochir Suppl. 2018;126:69–7.

    Article  PubMed  Google Scholar 

  23. Sekhon MS, Griesdale DE, Robba C, et al. Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Med. 2014;40:1267–74.

    Article  PubMed  Google Scholar 

  24. Czosnyka M, Matta BF, Smielewski P, Kirkpatrick PJ, Pickard JD. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88:802–8.

    Article  PubMed  CAS  Google Scholar 

  25. Rasulo FA, Bertuetti R, Robba C, et al. The accuracy of transcranial Doppler in excluding intracranial hypertension following acute brain injury: a multicenter prospective pilot study. Crit Care. 2017;21:44.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Giller CA, Hodges K, Batjer HH. Transcranial Doppler Pulsatility in vasodilation and stenosis. J Neurosurg. 1990;72:901–6.

    Article  PubMed  CAS  Google Scholar 

  27. De Riva N, Budohoski KP, Smielewski P, et al. Transcranial Doppler Pulsatility Index: what it is and what it isn’t. Neurocrit Care. 2012;17:58–66.

    Article  PubMed  Google Scholar 

  28. Le Roux P, Menon DK, Citerio G, et al. Consensus summary statement of the international multidisciplinary consensus conference on multimodality monitoring in neurocritical care. Neurocrit Care. 2014;17:58–66.

    Google Scholar 

  29. Lindegaard KF, Nornes H, Bakke SJ, Sorteberg W, Nakstad P. Cerebral vasospasm after subarachnoid hemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wein). 1988;42:81–4.

    CAS  Google Scholar 

  30. Soustiel JF, Shik V, Shreiber R, Tavor Y, Goldsher D. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard Index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33:72–7.

    Article  PubMed  Google Scholar 

  31. Cattalani A, Grasso VM, Vitali M, Gallesio I, Magrassi L, Barbanera A. Transcranial color-coded duplex sonography for evaluation of midline-shift after chronic-subdural hematoma evacuation (TEMASE): A prospective study. Clin Neurol Neurosurg. 2017;162:101–7.

    Article  PubMed  Google Scholar 

  32. Brunser AM, Lavados PM, Cárcamo DA, et al. Accuracy of Power mode transcranial Doppler in the diagnosis of brain death. J Med Ultrasound. 2015;23:29–33.

    Article  Google Scholar 

  33. Iravani M, Lee LK, Cannesson M. Standardized care versus precision medicine in the perioperative setting: Can point-of-care testing help bridge the gap? Anesth Analg. 2017;124:1347–53.

    Article  PubMed  Google Scholar 

  34. Rampil I. A primer for EEG signal processing in anesthesia. Anesthesiology. 1998;89:980–1002.

    Article  PubMed  CAS  Google Scholar 

  35. Scheeren TWL, Kuizenga MH, Maurer H, Struys MMRF, Heringlake M. Electroencephalography and brain oxygenation monitoring in the perioperative period. Anesth Analg. 2019;128:265–77.

    Article  PubMed  Google Scholar 

  36. Fahy BG, Chau DF. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111–7.

    Article  PubMed  Google Scholar 

  37. Purdon P, Pierce E, Mukamel E, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci U S A. 2013;110:E1142–51.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shehabi Y, Chan L, Kadiman S, et al. Sedation depth and long-term mortality in mechanically ventilated critically ill adults: a prospective longitudinal multicentre cohort study. Intensive Care Med. 2013;39:910–8.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang ZH, Chen H, Yang YL, et al. Bispectral index can reliably detect deep sedation in mechanically ventilated patients: a prospective multicenter validation study. Anesth Analg. 2017;125:176–83.

    Article  PubMed  Google Scholar 

  40. Watson P, Shintani A, Tyson R, Pandharipande P, Pun B, Ely E. Presence of electroencephalogram burst suppression in sedated, critically ill patients is associated with increased mortality. Crit Care Med. 2008;36:3171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dahaba A. Different conditions that could result in the bispectral index indicating an incorrect hypnotic state. Anesth Analg. 2005;101:765–73.

    Article  PubMed  Google Scholar 

  42. Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med. 2013;41:263–306.

    Article  PubMed  Google Scholar 

  43. Devlin JW, Skrobik Y, Gélinas C, et al. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit Care Med. 2018;46:e825–73.

    Article  PubMed  Google Scholar 

  44. Olson DM, Thoyre SM, Peterson ED, Graffagnino C. A randomized evaluation of bispectral index-augmented sedation assessment in neurological patients. Neurocrit Care. 2009;11:20–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Weatherburn C, Endacott R, Tynan P, Bailey M. The impact of Bispectral Index monitoring on sedation administration in mechanically ventilated patients. Anaesth Intensive Care. 2007;35:204–8.

    Article  PubMed  CAS  Google Scholar 

  46. Mahmood S, Parchani A, El-Menyar A, Zarour A, Al-Thani H, Latifi R. Utility of bispectral index in the management of multiple trauma patients. Surg Neurol Int. 2014;5:141.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Musialowicz T, Mervaala E, Kälviäinen R, Uusaro A, Ruokonen E, Parviainen I. Can BIS monitoring be used to assess the depth of propofol anesthesia in the treatment of refractory status epilepticus? Epilepsia. 2010;51:1580–6.

    Article  PubMed  Google Scholar 

  48. Towne A, Waterhouse E, Boggs J, et al. Prevalence of nonconvulsive status epilepticus in comatose patients. Neurology. 2000;54:340–5.

    Article  PubMed  CAS  Google Scholar 

  49. Friedman D, Claassen J, Hirsch LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009;109:506–23.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Rasulo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rasulo, F.A., Togni, T., Romagnoli, S. (2020). Essential Noninvasive Multimodality Neuromonitoring for the Critically Ill Patient. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2020. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-37323-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37323-8_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37322-1

  • Online ISBN: 978-3-030-37323-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics