Skip to main content

A Survey on Measurement Metrics for Shape Matching Based on Similarity, Scaling and Spatial Distance

  • Conference paper
  • First Online:
Data Science: From Research to Application (CiDaS 2019)

Abstract

Measuring difference or similarity between data is one of the most fundamental steps in data science. This topic is of the utmost importance in many artificial intelligent systems, machine learning and any data mining and knowledge extraction. There are several applications in image processing, map analysis, self-driving cars, GIS, etc., when data are in the shape of polygons or chains. In the present study, principal metrics for comparing geometric data are studied. In each metric, one, two or three features out of similarity, scaling, and spatial distance is considered. Evaluation for metrics based on three perspectives is discussed and results are provided in a detailed table. Additionally, for each case, one practical application is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: experimental studies and comparative evaluation. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009. vol. 9, pp. 312–319. IEEE (2009)

    Google Scholar 

  2. Zhang, Z., Huang, K., Tan, T.: Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 3, pp. 1135–1138. IEEE (2006)

    Google Scholar 

  3. Atev, S., Miller, G., Papanikolopoulos, N.P.: Clustering of vehicle trajectories. IEEE Trans. Intell. Transp. Syst. 11(3), 647–657 (2010)

    Article  Google Scholar 

  4. Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006)

    Article  Google Scholar 

  5. Borwein, J., Keener, L.: The Hausdorff metric and Cebysev centers. J. Approximation Theory 28(4), 366–376 (1980)

    Article  MathSciNet  Google Scholar 

  6. Liu, M.-Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy-rate clustering: cluster analysis via maximizing a submodular function subject to a metroid constraint. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 99–112 (2014)

    Article  Google Scholar 

  7. Chen, J., Wang, R., Liu, L., Song, J.: Clustering of trajectories based on Hausdorff distance. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1940–1944. IEEE (2011)

    Google Scholar 

  8. Li, X., Hu, W., Hu, W.: A coarse-to-fine strategy for vehicle motion trajectory clustering. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 1, pp. 591–594. IEEE (2006)

    Google Scholar 

  9. Dowson, D.C., Landau, B.V.: The Fréchet distance between multivariate normal distributions. J. Multivar. Anal. 12(3), 450–455 (1982)

    Article  Google Scholar 

  10. Shao, Z., Li, Y.: On integral invariants for effective 3-D motion trajectory matching and recognition. IEEE Trans. Cybern. 46(2), 511–523 (2016)

    Article  Google Scholar 

  11. Bautista, M.A., Hern´andez-Vela, A., Escalera, S., Igual, L., Pujol, O., Moya, J., Violant, V., Anguera, M.T.: A gesture recognition system for detecting behavioral patterns of ADHD. IEEE Trans. Cybern. 46(1) 136–147 (2016)

    Article  Google Scholar 

  12. Latecki, L.J., Lakamper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10) 1185–1190 (2000)

    Article  Google Scholar 

  13. Lee, J.-G., Han, J., Whang, K.-Y.: Trajectory clustering: a partition-and group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. ACM (2007)

    Google Scholar 

  14. Lee, J.-G., Han, J., Li, X., Gonzalez, H.: TraClass: trajectory classification using hierarchical region-based and trajectory-based clustering. Proc. VLDB Endowment 1(1), 1081–1094 (2008)

    Article  Google Scholar 

  15. Li, Z., Lee, J.-G., Li, X., Han, J.: Incremental clustering for trajectories. In: International Conference on Database Systems for Advanced Applications, pp. 32–46. Springer (2010)

    Google Scholar 

  16. Mazaheri, S., Bigham, B.S., Tayebi, R.M.: Fingerprint matching using an onion layer algorithm of computational geometry based on level 3 features. In: International Conference on Digital Information and Communication Technology and Its Applications. Springer, Heidelberg (2011)

    Google Scholar 

  17. Shamsfakhr, F., Bigham, B.S.: A neural network approach to navigation of a mobile robot and obstacle avoidance in dynamic and unknown environments. Turk. J. Electr. Eng. Comput. Sci. 25(3), 1629–1642 (2017)

    Article  Google Scholar 

  18. Shamsfakhr, F., Bigham, B.S.: GSR: geometrical scan registration algorithm for robust and fast robot pose estimation. Assembly Autom. (2018, to be printed)

    Google Scholar 

  19. Sadeghi, B., Mohades, A., Ortega, L.: Dynamic polar diagram. Inf. Process. Lett. 109(2), 142–146 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Sadeghi Bigham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bigham, B.S., Mazaheri, S. (2020). A Survey on Measurement Metrics for Shape Matching Based on Similarity, Scaling and Spatial Distance. In: Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E. (eds) Data Science: From Research to Application. CiDaS 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-37309-2_2

Download citation

Publish with us

Policies and ethics