Skip to main content

Identifying Cancer-Related Signaling Pathways Using Formal Methods

  • Conference paper
  • First Online:
Data Science: From Research to Application (CiDaS 2019)

Abstract

Methods called pathway analysis have emerged whose purpose is to identify significantly impacted signaling pathways in a given condition. Most of these methods employ graphs to model the interactions between genes. Graphs have some limitations in accurately modeling various aspects of the interactions in the signaling pathways. As a result, formal methods as practiced in computer science is suggested for modeling signaling pathways. Using formal methods, various types of interactions among biological components are modeled, which can reduce the false-positive rates compared to other methods. Formal methods can also model the concurrent and stochastic behavior of signaling pathways.

In this article, we illustrate how to employ a formal method for pathway analysis and then to evaluate its performance compared to other methods. Results show that the false-positive rate of a formal method approach is lower than other well-known methods. It is also shown that a formal method approach can identify impacted pathways in pancreatic cancer effectively. Furthermore, it can successfully recognize expecting pathways differentiated between African-American and European-American patients in prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanehisa, M., Goto, S.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)

    Article  Google Scholar 

  2. Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: the pathway interaction database. Nucleic Acids Res. 37(suppl_1), D674–D679 (2008)

    Article  Google Scholar 

  3. Mi, H., Lazareva-Ulitsky, B., Loo, R., Kejariwal, A., Vandergriff, J., Rabkin, S., Kitano, H.: The PANTHER database of protein families, subfamilies, functions, and pathways. Nucleic Acids Res. 33(suppl_1), D284–D288 (2005)

    Google Scholar 

  4. Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Jupe, S.: Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39(suppl_1), D691–D697 (2010)

    Google Scholar 

  5. Khatri, P., Sirota, M., Butte, A.J.: Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8(2), e1002375 (2012)

    Article  Google Scholar 

  6. Draghici, S., Khatri, P., Tarca, A.L., Amin, K., Done, A., Voichita, C., Romero, R.: A systems biology approach for pathway level analysis. Genome Res. 17(10), 1537–1545 (2007)

    Article  Google Scholar 

  7. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Mesirov, J.P.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. 102(43), 15545–15550 (2005)

    Article  Google Scholar 

  8. Tarca, A.L., Draghici, S., Khatri, P., Hassan, S.S., Mittal, P., Kim, J.S., Romero, R.: A novel signaling pathway impact analysis. Bioinformatics 25(1), 75–82 (2008)

    Article  Google Scholar 

  9. Mitrea, C., Taghavi, Z., Bokanizad, B., Hanoudi, S., Tagett, R., Donato, M., Draghici, S.: Methods and approaches in the topology-based analysis of biological pathways. Front. Physiol. 4, 278 (2013)

    Article  Google Scholar 

  10. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods Syst. Des. 15(1), 7–48 (1999)

    Article  Google Scholar 

  11. Tarca, A.L., Draghici, S., Bhatti, G., Romero, R.: Down-weighting overlapping genes improves gene set analysis. BMC Bioinform. 13(1), 136 (2012)

    Article  Google Scholar 

  12. GEO Accession Viewer. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8671. Accessed 7 Dec 2018

  13. GEO Accession Viewer. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE6956. Accessed 7 Dec 2018

  14. GEO Accession Viewer. https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32676. Accessed 7 Dec 2018

  15. Donahue, T.R., Tran, L.M., Hill, R., Li, Y., Kovochich, A., Calvopina, J.H., Li, X.: Integrative survival-based molecular profiling of human pancreatic cancer. Clin. Cancer Res. 18(5), 1352–1363 (2012)

    Article  Google Scholar 

  16. Wallace, T.A., Prueitt, R.L., Yi, M., Howe, T.M., Gillespie, J.W., Yfantis, H.G., Ambs, S.: Tumor immunobiological differences in prostate cancer between African-American and European-American men. Can. Res. 68(3), 927–936 (2008)

    Article  Google Scholar 

  17. Zhang, Y., Morris, J.P., Yan, W., Schofield, H.K., Gurney, A., Simeone, D.M., di Magliano, M.P.: Canonical Wnt signaling is required for pancreatic carcinogenesis. Can. Res. 73(15), 4909–4922 (2013)

    Article  Google Scholar 

  18. Korc, M.: Pathways for aberrant angiogenesis in pancreatic cancer. Mol. Cancer 2(1), 8 (2003)

    Article  Google Scholar 

  19. Kanno, A., Masamune, A., Hanada, K., Kikuyama, M., Kitano, M.: Advances in early detection of pancreatic cancer. Diagnostics 9(1), 18 (2019)

    Article  Google Scholar 

  20. Tennakoon, J.B., Shi, Y., Han, J.J., Tsouko, E., White, M.A., Burns, A.R., Zhang, A., Xia, X., Ilkayeva, O.R., Xin, L., Ittmann, M.M.: Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 33(45), 5251 (2014)

    Article  Google Scholar 

  21. Rohrmann, S., Nelson, W.G., Rifai, N., Brown, T.R., Dobs, A., Kanarek, N., Platz, E.A.: Serum estrogen, but not testosterone, levels differ between black and white men in a nationally representative sample of Americans. J. Clin. Endocrinol. Metab. 92(7), 2519–2525 (2007)

    Article  Google Scholar 

  22. Goffin, V.: Prolactin receptor targeting in breast and prostate cancers: new insights into an old challenge. Pharmacol. Ther. 179, 111–126 (2017)

    Article  Google Scholar 

  23. Hernandez, M.E., Wilson, M.J.: The role of prolactin in the evolution of prostate cancer. Open J. Urol. 2(03), 188 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maseud Rahgozar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mansoori, F., Rahgozar, M., Kavousi, K. (2020). Identifying Cancer-Related Signaling Pathways Using Formal Methods. In: Bohlouli, M., Sadeghi Bigham, B., Narimani, Z., Vasighi, M., Ansari, E. (eds) Data Science: From Research to Application. CiDaS 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-030-37309-2_11

Download citation

Publish with us

Policies and ethics