Skip to main content

Modern Family: A Revocable Hybrid Encryption Scheme Based on Attribute-Based Encryption, Symmetric Searchable Encryption and SGX

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 305)

Abstract

Secure cloud storage is considered as one of the most important issues that both businesses and end-users take into account before moving their private data to the cloud. Lately, we have seen some interesting approaches that are based either on the promising concept of Symmetric Searchable Encryption (SSE) or on the well-studied field of Attribute-Based Encryption (ABE). In this paper, we propose a hybrid encryption scheme that combines both SSE and ABE by utilizing the advantages of both these techniques. In contrast to many approaches, we design a revocation mechanism that is completely separated from the ABE scheme and solely based on the functionality offered by SGX.

Keywords

  • Access control
  • Attribute-based encryption
  • Cloud security
  • Hybrid encryption
  • Policies
  • Storage protection
  • Symmetric searchable encryption

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37231-6_28
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   74.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-37231-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   95.00
Price excludes VAT (USA)

Notes

  1. 1.

    \(\mathsf {sk_{rpt}}\) is shared with every enclave on the same platform.

  2. 2.

    The user simply forwards the components of \(m_{key}\) to the CSP along with a search token \(\tau _s(w)\).

  3. 3.

    One could completely ignore the Editing Phase and the result would be a static MF.

References

  1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334. IEEE Computer Society, Washington, DC (2007)

    Google Scholar 

  2. Boyko, V.: On the security properties of OAEP as an all-or-nothing transform. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_32

    CrossRef  Google Scholar 

  3. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report 2016/086 (2016). https://eprint.iacr.org/2016/086

  4. Dowsley, R., Michalas, A., Nagel, M., Paladi, N.: A survey on design andimplementation of protected searchable data in the cloud. Comput. Sci. Rev. 26, 17–30 (2017)

    CrossRef  MathSciNet  Google Scholar 

  5. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: Iron: functional encryption using Intel SGX. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, pp. 765–782. ACM (2017)

    Google Scholar 

  6. Guo, W., Dong, X., Cao, Z., Shen, J.: Efficient attribute-based searchable encryption on cloud storage. J. Phys. Conf. Ser. 1087, 052001 (2018)

    CrossRef  Google Scholar 

  7. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption, pp. 965–976 (2012)

    Google Scholar 

  8. Lee, S., Shih, M., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-grained control flow inside SGX enclaves with branch shadowing. In: 26th USENIX Security Symposium, BC, Canada, 16–18 August 2017, pp. 557–574 (2017)

    Google Scholar 

  9. Liu, J.K., Yuen, T.H., Zhang, P., Liang, K.: Time-based direct revocable ciphertext-policy attribute-based encryption with short revocation list. Cryptology ePrint Archive, Report 2018/330 (2018). https://eprint.iacr.org/2018/330

  10. Michalas, A.: Sharing in the rain: secure and efficient data sharing for the cloud. In: Proceedings of the 11th IEEE International Conference for Internet Technology and Secured Transactions (ICITST-2016). IEEE (2016)

    Google Scholar 

  11. Michalas, A.: The lord of the shares: combining attribute-based encryption and searchable encryption for flexible data sharing. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC 2019, pp. 146–155. ACM, New York (2019). https://doi.org/10.1145/3297280.3297297, http://doi.acm.org/10.1145/3297280.3297297

  12. Microsoft: Microsoft Security Intelligence Report (2017)

    Google Scholar 

  13. Myers, S., Shull, A.: Practical revocation and key rotation. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 157–178. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_9

    CrossRef  Google Scholar 

  14. Paladi, N., Gehrmann, C., Michalas, A.: Providing user security guarantees in public infrastructure clouds. IEEE Trans. Cloud Comput. 5(3), 405–419 (2017). https://doi.org/10.1109/TCC.2016.2525991

    CrossRef  Google Scholar 

  15. Paladi, N., Michalas, A., Gehrmann, C.: Domain based storage protection with secure access control for the cloud. In: Proceedings of the 2014 International Workshop on Security in Cloud Computing. ASIACCS 2014. ACM, New York(2014)

    Google Scholar 

  16. Weichbrodt, N., Kurmus, A., Pietzuch, P., Kapitza, R.: AsyncShock: exploiting synchronisation bugs in Intel SGX enclaves. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 440–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4_22

    CrossRef  Google Scholar 

  17. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side channels for untrusted operating systems. In: Proceedings of the 36th IEEE Symposium on Security and Privacy (Oakland). IEEE, May 2015

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandros Bakas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bakas, A., Michalas, A. (2019). Modern Family: A Revocable Hybrid Encryption Scheme Based on Attribute-Based Encryption, Symmetric Searchable Encryption and SGX. In: Chen, S., Choo, KK., Fu, X., Lou, W., Mohaisen, A. (eds) Security and Privacy in Communication Networks. SecureComm 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 305. Springer, Cham. https://doi.org/10.1007/978-3-030-37231-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37231-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37230-9

  • Online ISBN: 978-3-030-37231-6

  • eBook Packages: Computer ScienceComputer Science (R0)