Skip to main content

Ensemble Kalman Filter and Extended Kalman Filter for State-Parameter Dual Estimation in Mixed Effects Models Defined by a Stochastic Differential Equation

  • Conference paper
  • First Online:
Technology, Sustainability and Educational Innovation (TSIE) (TSIE 2019)

Abstract

The biological processes that occur in the real world have complex dynamics. Mathematical models that try to describe these phenomena have nonlinear structures, observations are made at discrete time points and include measurement errors, and are difficult to estimate. In particular, when modeling dynamics of repeated measurements on individuals or objects, they are analyzed by mixed-effects diffusion models. The standard estimation methods in these cases are: maximum likelihood, EM, SAEM, Newton Raphson, among others. In this paper we propose a specific inference methodology for models. Apply extended Kalman Filter (EKF) and the ensemble Kalman filter (EnKF) to the estimation of both states and parameters of nonlinear state-space models. To illustrate the methodology, the states and parameters of an Ornstein- Uhlembeck (O-U) mixed-effects model were estimated, obtaining precise estimates with small standard deviations. To measure the estimation quality of the algorithms was used as a measure of goodness-of-fit known as the square root of the mean quadratic error, obtaining very small errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bacher, P., Madsen, H.: Identifying suitable models for the heat dynamics of buildings. Energy Build. 43, 1511–1522 (2011)

    Article  Google Scholar 

  2. Dahlin, J., Kohn, R., Sochn, T.: Bayesian inference for mixed effects models with heterogeneity. Technical reports from the Automatic Control group in Linkping are available from http://www.control.isy.liu.se/publications (2016)

  3. Delattre, M., Lavielle, M.: Coupling the SAEM algorithm and the extended Kalman filter for maximum likelihood estimation in mixed-effects diffusion models. Stat. Interface 6, 519–532 (2013)

    Article  MathSciNet  Google Scholar 

  4. Ditlevsen, S., De Gaetano, A.: Mixed effects in stochastic differential equation models. Stat. J. 3(2), 137–153 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Donnet, S., Foulley, J., Samson, A.: Bayesian analysis of growth curves using mixed models defined by stochastic differentials equations. Biometrics 66(3), 733–741 (2010)

    Article  MathSciNet  Google Scholar 

  6. Donnet, S., Foulley, J., Samson, A.: Using PMCMC in EM algorithm for stochastic mixed models: theoretical and practical issues. Journal de la Socit Franaise de Statistique 155(1), 49–72 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Donnet, S., Samson, A.: A review on estimation of stochastic differential equations for pharmacokinetic/pharmacodynamics models. Adv. Drug Deliv. Rev. 65(7), 929–939 (2013)

    Article  Google Scholar 

  8. Donnet, S., Samson, A.: Parametric inference for mixed models defined by stochastic differential equations. ESAIM: Probab. Stat. 12, 196218 (2008). www.esaim-ps.org, https://doi.org/10.1051/ps:2007045

  9. Evensen, G.: The ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)

    Article  Google Scholar 

  10. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd ed. Springer (2009)

    Google Scholar 

  11. Faugeras, O., Touboul, J., Cessac, B.: A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 1–28 (2009)

    Article  Google Scholar 

  12. Goodall, Li, Kadirkamanathan, V.: Estimation of parameters in a linear state space model using a Rao-Blackwellised particle filter. IEE Proc. Control Theory Appl. 151, 727–738 (2004)

    Article  Google Scholar 

  13. Hansen, A., Dun-Henriksen, A., Juhl, R., Schmidt, S., Norgaard, K., Jorgensen, J., Madsen, H.: Predicting plasma glucose from interstitial glucose observations using Bayesian methods. J. Diabetes Sci. Technol. 8, 321–330 (2014)

    Article  Google Scholar 

  14. Hermann, S., Ickstadt, K., Mller, C.: Bayesian prediction of crack growth based on a hierarchical diffusion model. To appear In: Applied Stochastic Models in Business and Industry (2016)

    Google Scholar 

  15. Infante, S., Sánchez, L., Cedeño, F.: Filtros para Predecir Incertidumbre de Lluvia y Clima. Revista de Climatología 12, 33–48 (2012). ISSN 1578-8768

    Google Scholar 

  16. Infante, S., Sánchez, L., Hernández, A.: Stochastic models to estimate population dynamics. Stat. Optim. Inf. Comput. 7, 311328 (2019). Published online in International Academic Press (www.IAPress.org)

  17. Iversen, E., Morales, J., Moller, J., Madsen, H.: Probabilistic forecasts of solar irradiance using stochastic differential equations. Environmetrics 25, 152–164 (2014)

    Article  MathSciNet  Google Scholar 

  18. van Leeuwen, P., Evensen, G.: Data assimilation and inverse methods in terms of a probabilistic formulation. Mon. Weather Rev. 124, 2898–2913 (1996)

    Article  Google Scholar 

  19. Liu, J., West, M.: Combined parameter and state estimation in simulation- based filtering. In: Doucet, A., de Freitas, J., Gordon, N.J. (eds.) Sequential Monte Carlo Methods in Practice. Springer, New York (2001)

    Google Scholar 

  20. Moradkhani, H., Sorooshian, S., Gupta, H.V., Houser, P.R.: Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Adv. Water Resour. 28, 135–147 (2005)

    Article  Google Scholar 

  21. Overgaard, R.V., Jonsson, N., Torne, C.W., Madsen, H.: Non-linear mixed-effects models with stochastic differential equations: implementation of an estimation algorithm. J. Pharmacokinet Pharmacodyn. 32, 85–107 (2005)

    Article  Google Scholar 

  22. Picchini, U., Forman, J.: Stochastic differential equation mixed effects models for tumor growth and response to treatment. arXiv: 1607;02633v2[stat:AP] (2016)

    Google Scholar 

  23. Pitt, M.K., Shephard, N.: Filtering via simulation: Auxiliary particle filters. J. Am. Stat. Assoc. 94, 590–599 (1999)

    Google Scholar 

  24. Simon, D.: optimal State Estimation-Kalman, H, and Nonlinear Approaches, p. 552. Wiley, Hoboken, New Jersey (2006)

    Book  Google Scholar 

  25. Soto, J., Infante, S., Camaho, F., Amaro, I.: Estimación de un modelo de efectos mixtos usando un proceso de difusión parcialmente observado. Revista de Matemática: Teoría y aplicaciones. 26(1), 83–98 (2019). CIMPA-UCR ISSN: 1409-2433 (print), 2215-3373 (online). https://doi.org/10.15517/rmta.v26i1.35527

  26. Stroud, J., Stein, M., Lesht, B., Schwar, D., Beletsky, D.: An ensemble Kalman filter and smoother for satellite data assimilation. J. Am. Stat. Assoc. 105, 978–990 (2010)

    Article  MathSciNet  Google Scholar 

  27. Sun, X., Jin, L., Xiong, M.: Extended Kalman filter for estimation of parameters in nonlinear state-space models of biochemical networks. PLoS One 3(11), e3758 (2008). https://doi.org/10.1371/journal.pone.0003758

    Article  Google Scholar 

  28. Sánchez, L., Infante, S., Griffin, V., Rey, D.: Spatio-temporal dynamic model and parallelized ensemble Kalman filter for precipitation data. Braz. J. Probab. Stat. 30(4), 653–675 (2016)

    Article  MathSciNet  Google Scholar 

  29. Sánchez, L., Infante, S., Marcano, J., Griffin, V.: Polynomial chaos based on the parallelized ensemble Kalman filter to estimate precipitation states. Stat. Optim. Inf. Comput. 3(1), 79–95 (2015)

    Article  MathSciNet  Google Scholar 

  30. Whitaker, G.A., Golightly, A., Boys, R., Sherlock, C.: Bayesian inference for diffusion-driven mixed-effects models. Bayesian Anal. (2016). http://doi.org/10.1214/16-BA1009

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Soto, J., Infante, S. (2020). Ensemble Kalman Filter and Extended Kalman Filter for State-Parameter Dual Estimation in Mixed Effects Models Defined by a Stochastic Differential Equation. In: Basantes-Andrade, A., Naranjo-Toro, M., Zambrano Vizuete, M., Botto-Tobar, M. (eds) Technology, Sustainability and Educational Innovation (TSIE). TSIE 2019. Advances in Intelligent Systems and Computing, vol 1110. Springer, Cham. https://doi.org/10.1007/978-3-030-37221-7_24

Download citation

Publish with us

Policies and ethics