Skip to main content

Maximum Power Point Tracking Based on the Bio Inspired BAT Algorithm

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 102)


Nowadays, there is an increasing trend in the use of solar energy by using photovoltaic system (PVS). The power generated by a PVS highly relies on solar intensity. Therefore, a Maximum Power Point Tracker (MPPT) is one of the key components of solar electricity generation. It is used to extract the maximum power point (MPP) produced by a PVS. In this paper, we present a bio inspired Bat Swarm Optimization (BSO) algorithm to track the MPP thereby increasing the performance of the PVS. The proposed BSO algorithm is developed in Matlab/Simulink environment. Furthermore, the results obtained from the BSO algorithm are compared with the well-known conventional Perturb and Observe (P&O) algorithm.


  • Maximum power point tracking
  • Photovoltaic system
  • Bio inspired algorithm
  • Bat algorithm
  • Perturb and Observe

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37207-1_3
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-37207-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.


  1. Eason, G., Noble, B., Sneddon, I.N.: A review of improved maximum peak power tracking algorithms for photovoltaic. Int. J. Electr. Eng. Technol. (IJEET) 1, 85–107 (2010). ISSN 0976-6553

    Google Scholar 

  2. Salas, V., Olias, E., Barrado, A., Lazaro, A.: A review of the maximum power point tracking algorithms for stand alone photovoltaic systems. Sol. Energy Mater. Sol. Cells 90, 1555–1578 (2006)

    CrossRef  Google Scholar 

  3. Mellit, A., Kalougirou, S.A.: Artificial intelligence techniques for photovoltaic application: a review. Prog. Energy Combust. Sci. 34, 574–632 (2008)

    CrossRef  Google Scholar 

  4. Mellit, A.: A soft computing technique modeling and simulation of stand alone photovoltaic power supply system. Int. Rev. Electr. Eng. IREE 2(1), 480–488 (2007)

    Google Scholar 

  5. Titri, S., Larbes, C., Youcef Toumi, K.: Rapid prototyping of PVS into FPGA: from model based design to FPGA/ASICs implementation. In: 2014 9th International Design and Test Symposium (2014)

    Google Scholar 

  6. Titri, S., Larbes, C., Youcef Toumi, K., Benatchba, K.: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl. Soft Comput. J.

  7. Larbes, C., Ait Cheikh, S.M., Obeidi, T., Zerguerras, A.: Genetic algorithms optimized fuzzy logic control for the MPPT in photovoltaic system. Renew. Energy 34(10), 2093–2100 (2009)

    CrossRef  Google Scholar 

  8. Ait Cheikh, M.S., Larbes, C., Tchoketch Kebir, G.F., Zergueras, A.: Maximum power point tracking using fuzzy logic scheme. Revue des Energies Renouvelables 10(3), 387–395 (2007)

    Google Scholar 

  9. Chekired, F., Mahrane, A., Chikh, M., Smara, Z.: Optimization of energy management of a photovoltaic system by the fuzzy logic technique. Energy Procedia 6, 513–521 (2011)

    CrossRef  Google Scholar 

  10. Hanif Halim, A., Ismail, I.: Bio inspired optimization method: a review. Int. J. Artif. Intell. 1 (2014)

    Google Scholar 

  11. Binitha, S., Siva Sathya, S.: A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. IJSCE 2(2), 137–150 (2012)

    Google Scholar 

  12. Yang, X.S.: BAT algorithm for multiobjective optimization. Int. J. Bio Inspired Comput. 3(5) (2011)

    Google Scholar 

  13. Yang, X.S.: A new metaheuristic bat inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization, vol. 284. Springer Press (2010)

    Google Scholar 

  14. Liu, X., Lopez, L.A.C.: An improved perturb and observe maximum power point tracking algorithm for PV arrays. In: IEEE 35th Power Electronics Specialists Conference, PESC 2004, pp. 2005–2010 (2004)

    Google Scholar 


Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Sabrina Titri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Titri, S., Kaced, K., Larbes, C. (2020). Maximum Power Point Tracking Based on the Bio Inspired BAT Algorithm. In: Hatti, M. (eds) Smart Energy Empowerment in Smart and Resilient Cities. ICAIRES 2019. Lecture Notes in Networks and Systems, vol 102. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37206-4

  • Online ISBN: 978-3-030-37207-1

  • eBook Packages: EngineeringEngineering (R0)