Skip to main content

The Pursuit of the Maximum Power Point of a Photovoltaic System Using Artificial Neural Network

Part of the Lecture Notes in Networks and Systems book series (LNNS,volume 102)

Abstract

The use of maximum power point tracking techniques in photovoltaic systems attracts particular attention to research and ensures that the photovoltaic energy system delivers as much as possible of the output power available to the load, regardless of the climatic conditions (variation in temperature and solar radiation), the choice and development are made to implement a more appropriate and effective maximum power point tracking controller using neural networks.

In order to obtain maximum power point tracking, the importance has also been given in this paper to the photovoltaic panel, these inputs (temperature and solar radiation) and also to the control of the power converter.

The results obtained using the Matlab/Simulink environment; confirm the effectiveness of the proposed method in terms of efficiency, fast calculation time of its robustness and the precision of its outputs which allow giving decisions correct, reliable and immediate.

Keywords

  • Maximum power point tracking (MPPT)
  • Photovoltaic (PV) system
  • Artificial neural network (ANN)
  • Boost converter
  • Perturbation and observation (P & O)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37207-1_11
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-37207-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

References

  1. Sourov, M.R., Tania Ahmed, U., Golam Rabbani, M.A.: High performance maximum power point tracker for photovoltaic power system using DC-DC boost converter. IOSR J. Eng. 2(12), 12–20 (2012)

    CrossRef  Google Scholar 

  2. Mahjoub-Essefi, R., Souissi, M., Hadj-Abdallah, H.: Maximum power point tracking control technique for photovoltaic systems using neural networks. In: Proceedings of the 5th Annual International Renewable Energy Congress, IREC’2014, Hammamet, 27 March, pp. 22–427 (2014)

    Google Scholar 

  3. Mahjoub Essefi, R., Souissi, M., Hadj Abdallah, H.: Maximum power point tracking control using neural networks for stand-alone photovoltaic systems. Int. J. Modern Nonlinear Theory Appl. 3, 53–65 (2014)

    CrossRef  Google Scholar 

  4. Almonacid, F., Fernandez, E.F., Rodrigo, P., Pérez-Higueras, P.J., Rus-Cascas, C.: Estimating the maximum power of a high concentrator photovoltaic (HCPV) module using an artificial neural network. Energy 53, 165–172 (2013)

    CrossRef  Google Scholar 

  5. Mahanta, J., Sharma, B., Sarmah, N.: A review of maximum power point tracking algorithm for solar photovoltaic applications. J. Electr. Electron. Eng. (IOSR-JEEE) 13(4), 01–13 (2018)

    Google Scholar 

  6. Amoozadeh, M., Gholamian, S.A.: Active and reactive power control of photovoltaic systems connected to the network for maximum power point tracking. Int. J. Mechatron. Electr. Comput. Technol. (IJMEC) 4(12), 857–885 (2014)

    Google Scholar 

  7. Kishor, N., Mohanty, S.R., Villalva, M.G., Ruppert, E.: Simulation of PV array output power for modified PV cell model. In: IEEE, International Conference on Power and Energy (PEC), Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  8. Guingane, T.T., Koalaga, Z., Simonguy, E., Zougmore, F., Bonkoungou, D.: Modélisation et simulation d’un champ photovoltaïque utilisant un convertisseur élévateur de tension (boost) avec le logiciel MATLAB/SIMULINK. Journal International de Technologie, de l’Innovation, de la Physique, de l’Energie et de l’Environnement JITIPEE. 2(1), 1–14 (2016)

    Google Scholar 

  9. Aouchiche, N., Aït Cheikh, M.S., Malek, A.: Poursuite du point de puissance maximale d’un système photovoltaïque par les méthodes de l’incrémentation de conductance et la perturbation & observation. Revue des Energies Renouvelables 16(3), 485–498 (2013)

    Google Scholar 

  10. Kumari, J.S., Sai Babu, Ch., Babu, K.: Design and Analysis of P&O and IP&O MPPT techniques for photovoltaic system. Int. J. Modern Eng. Res. (IJMER) 2(4), 2174–2180 (2012)

    Google Scholar 

  11. Remy, Gh., Bethoux, O., Marchand, C., Dogan, H.: Review of MPPT Techniques for Photovoltaic Systems. Laboratoire de Génie Electrique de Paris (LGEP)/SPEE-Labs, CNRS UMR 8507, SUPELEC; Université Pierre et Marie Curie, France, pp. 1–14

    Google Scholar 

  12. Mammar, K., Chacker, A.: Adaptive neuro-fuzzy controller of PEM fuel cell system power generation. Int. J. Comput. Sci. (IJCSI) 9(6), 1694–081 (2012)

    Google Scholar 

  13. Bendib, B., Krim, F., Belmili, H., Almi, M., Bolouma, F.S.: An intelligent MPPT approach based on neural-network voltage estimator and fuzzy controller, applied to a stand-alone PV system. In: IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istumbul, Turkey, pp. 404–409 (2014)

    Google Scholar 

  14. Manas, M., Kumari, A., Das, S., et al.: An artificial neural network based maximum power point tracking method for photovoltaic system. In: IEEE International Conference on Recent Advances and Innovations in Engineering (ICRAIE), Jaipur, India (2016)

    Google Scholar 

  15. Chen, M., Ma, S., Wu, J., Huang, L.: Analysis of MPPT failure and development of an augmented nonlinear controller for MPPT of photovoltaic systems under partial shading conditions. J. Appl. Sci. (MDPI) 7(95), 1–22 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Saadaoui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Saadaoui, F., Mammar, K., Hazzab, A. (2020). The Pursuit of the Maximum Power Point of a Photovoltaic System Using Artificial Neural Network. In: Hatti, M. (eds) Smart Energy Empowerment in Smart and Resilient Cities. ICAIRES 2019. Lecture Notes in Networks and Systems, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-030-37207-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37207-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37206-4

  • Online ISBN: 978-3-030-37207-1

  • eBook Packages: EngineeringEngineering (R0)