Skip to main content

Mesenchymal Stem Cells in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1234))

Abstract

The interactions between tumor cells and the non-malignant stromal and immune cells that make up the tumor microenvironment (TME) are critical to the pathophysiology of cancer. Mesenchymal stem cells (MSCs) are multipotent stromal stem cells found within most cancers and play a critical role influencing the formation and function of the TME. MSCs have been reported to support tumor growth through a variety of mechanisms including (i) differentiation into other pro-tumorigenic stromal components, (ii) suppression of the immune response, (iii) promotion of angiogenesis, (iv) enhancement of an epithelial-mesenchymal transition (EMT), (v) enrichment of cancer stem-like cells (CSC), (vi) increase in tumor cell survival, and (vii) promotion of tumor metastasis. In contrast, MSCs have also been reported to have antitumorigenic functions including (i) enhancement of the immune response, (ii) inhibition of angiogenesis, (iii) regulation of cellular signaling, and (iv) induction of tumor cell apoptosis. Although literature supporting both arguments exists, most studies point to MSCs acting in a cancer supporting role within the confines of the TME. Tumor-suppressive effects are observed when MSCs are used in higher ratios to tumor cells. Additionally, MSC function appears to be tissue type dependent and may rely on cancer education to reprogram a naïve MSC with antitumor effects into a cancer-educated or cancer-associated MSC (CA-MSC) which develops pro-tumorigenic function. Further work is required to delineate the complex crosstalk between MSCs and other components of the TME to accurately assess the impact of MSCs on cancer initiation, growth, and spread.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ansell SM, Vonderheide RH (2013) Cellular composition of the tumor microenvironment. Am Soc Clin Oncol Educ Book 33:e91

    Article  Google Scholar 

  2. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y et al (2017) Role of tumor microenvironment in tumorigenesis. J Cancer 8(5):761–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  PubMed  Google Scholar 

  5. Tropel P, Noel D, Platet N, Legrand P, Benabid AL, Berger F (2004) Isolation and characterisation of mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295(2):395–406

    Article  CAS  PubMed  Google Scholar 

  6. Coffman LG, Pearson AT, Frisbie LG, Freeman Z, Christie E, Bowtell DD, Buckanovich RJ (2019) Ovarian carcinoma-associated mesenchymal stem cells arise from tissue-specific normal stroma. Stem Cell 37(2):257–269

    Article  CAS  Google Scholar 

  7. McLean K, Gong Y, Choi Y, Deng N, Yang K, Bai S et al (2011) Human ovarian carcinoma-associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. J Clin Invest 121(8):3206–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B et al (2009) Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4(4):e4992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Guan J, Chen J (2013) Mesenchymal stem cells in the tumor microenvironment. Biomed Rep 1(4):517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T, Itoh J et al (2011) Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 17(7–8):579–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han Z, Tian Z, Lv G, Zhang L, Jiang G, Sun K et al (2011) Immunosuppressive effect of bone marrow-derived mesenchymal stem cells in inflammatory microenvironment favours the growth of B16 melanoma cells. J Cell Mol Med 15(11):2343–2352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Halpern JL, Kilbarger A, Lynch CC (2011) Mesenchymal stem cells promote mammary cancer cell migration in vitro via the CXCR2 receptor. Cancer Lett 308(1):91–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Coffman LG, Choi YJ, McLean K, Allen BL, di Magliano MP, Buckanovich RJ (2016) Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop. Oncotarget 7(6):6916–6932

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bainbridge P (2013) Wound healing and the role of fibroblasts. J Wound Care 22(8):407–408. 10-12

    Article  CAS  PubMed  Google Scholar 

  15. Ohlund D, Elyada E, Tuveson D (2014) Fibroblast heterogeneity in the cancer wound. J Exp Med 211(8):1503–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT et al (2011) Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences. J Cell Mol Med 15(3):635–646

    Article  CAS  PubMed  Google Scholar 

  17. Arena S, Salati M, Sorgentoni G, Barbisan F, Orciani M (2018) Characterization of tumor-derived mesenchymal stem cells potentially differentiating into cancer-associated fibroblasts in lung cancer. Clin Transl Oncol 20(12):1582–1591

    Article  CAS  PubMed  Google Scholar 

  18. Barcellos-de-Souza P, Comito G, Pons-Segura C, Taddei ML, Gori V, Becherucci V et al (2016) Mesenchymal stem cells are recruited and activated into carcinoma-associated fibroblasts by prostate cancer microenvironment-derived TGF-beta1. Stem Cells 34(10):2536–2547

    Article  CAS  PubMed  Google Scholar 

  19. Shangguan L, Ti X, Krause U, Hai B, Zhao Y, Yang Z et al (2012) Inhibition of TGF-beta/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells 30(12):2810–2819

    Article  PubMed  CAS  Google Scholar 

  20. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121(3):335–348

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W et al (2012) SDF-1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial-mesenchymal transition in vitro through non-canonical activation of Hedgehog pathway. Cancer Lett 322(2):169–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cukierman E, Bassi DE (2010) Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin Cancer Biol 20(3):139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shimoda M, Mellody KT, Orimo A (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21(1):19–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Giannoni E, Bianchini F, Masieri L, Serni S, Torre E, Calorini L et al (2010) Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial-mesenchymal transition and cancer stemness. Cancer Res 70(17):6945–6956

    Article  CAS  PubMed  Google Scholar 

  25. Calon A, Espinet E, Palomo-Ponce S, Tauriello DV, Iglesias M, Cespedes MV et al (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22(5):571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15(1):68–74

    Article  CAS  PubMed  Google Scholar 

  27. Chandler C, Liu T, Buckanovich R, Coffman LG (2019) The double edge sword of fibrosis in cancer. Transl Res 209:55–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mazo EB, Kan Ia D (1974) [Angiotensin test in the diagnosis of vasorenal hypertension]. Ter Arkh 46(7):110–113

    Google Scholar 

  29. Wang C, Gao C, Meng K, Qiao H, Wang Y (2015) Human adipocytes stimulate invasion of breast cancer MCF-7 cells by secreting IGFBP-2. PLoS One 10(3):e0119348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR et al (2011) Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med 17(11):1498–1503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le Blanc K (2006) Mesenchymal stromal cells: tissue repair and immune modulation. Cytotherapy 8(6):559–561

    Article  PubMed  CAS  Google Scholar 

  32. Wang M, Yuan Q, Xie L (2018) Mesenchymal stem cell-based immunomodulation: properties and clinical application. Stem Cells Int 2018:3057624

    PubMed  PubMed Central  Google Scholar 

  33. Gao WX, Sun YQ, Shi J, Li CL, Fang SB, Wang D et al (2017) Effects of mesenchymal stem cells from human induced pluripotent stem cells on differentiation, maturation, and function of dendritic cells. Stem Cell Res Ther 8(1):48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sotiropoulou PA, Perez SA, Gritzapis AD, Baxevanis CN, Papamichail M (2006) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24(1):74–85

    Article  PubMed  Google Scholar 

  35. Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A et al (2010) Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem Cells 28(10):1856–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Selleri S, Bifsha P, Civini S, Pacelli C, Dieng MM, Lemieux W et al (2016) Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming. Oncotarget 7(21):30193–30210

    Article  PubMed  PubMed Central  Google Scholar 

  37. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99(10):3838–3843

    Article  PubMed  Google Scholar 

  38. Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T et al (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10(5):544–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Connor BP, Vogel LA, Zhang W, Loo W, Shnider D, Lind EF et al (2006) Imprinting the fate of antigen-reactive B cells through the affinity of the B cell receptor. J Immunol 177(11):7723–7732

    Article  CAS  PubMed  Google Scholar 

  40. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E et al (2003) Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 101(9):3722–3729

    Article  CAS  PubMed  Google Scholar 

  41. Tabera S, Perez-Simon JA, Diez-Campelo M, Sanchez-Abarca LI, Blanco B, Lopez A et al (2008) The effect of mesenchymal stem cells on the viability, proliferation and differentiation of B-lymphocytes. Haematologica 93(9):1301–1309

    Article  CAS  PubMed  Google Scholar 

  42. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD et al (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105(10):4120–4126

    Article  CAS  PubMed  Google Scholar 

  43. Batten P, Sarathchandra P, Antoniw JW, Tay SS, Lowdell MW, Taylor PM et al (2006) Human mesenchymal stem cells induce T cell anergy and downregulate T cell allo-responses via the TH2 pathway: relevance to tissue engineering human heart valves. Tissue Eng 12(8):2263–2273

    Article  CAS  PubMed  Google Scholar 

  44. Sato K, Ozaki K, Oh I, Meguro A, Hatanaka K, Nagai T et al (2007) Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109(1):228–234

    Article  CAS  PubMed  Google Scholar 

  45. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al (2003) Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102(10):3837–3844

    Article  CAS  PubMed  Google Scholar 

  46. Mathew E, Brannon AL, Del Vecchio A, Garcia PE, Penny MK, Kane KT et al (2016) Mesenchymal stem cells promote pancreatic tumor growth by inducing alternative polarization of macrophages. Neoplasia 18(3):142–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng J, Li L, Liu Y, Wang Z, Zhu X, Bai X (2012) Interleukin-1alpha induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells. Mol Med Rep 6(5):955–960

    Article  CAS  PubMed  Google Scholar 

  48. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  49. Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y et al (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37

    Article  CAS  PubMed  Google Scholar 

  50. El-Haibi CP, Bell GW, Zhang J, Collmann AY, Wood D, Scherber CM et al (2012) Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci U S A 109(43):17460–17465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bates RC, Mercurio AM (2003) Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Mol Biol Cell 14(5):1790–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  CAS  PubMed  Google Scholar 

  53. Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y et al (2013) Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci 104(2):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hsu HS, Lin JH, Hsu TW, Su K, Wang CW, Yang KY et al (2012) Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway. Lung Cancer 75(2):167–177

    Article  PubMed  Google Scholar 

  55. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Maffey A, Storini C, Diceglie C, Martelli C, Sironi L, Calzarossa C et al (2017) Mesenchymal stem cells from tumor microenvironment favour breast cancer stem cell proliferation, cancerogenic and metastatic potential, via ionotropic purinergic signalling. Sci Rep 7(1):13162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nishimura K, Semba S, Aoyagi K, Sasaki H, Yokozaki H (2012) Mesenchymal stem cells provide an advantageous tumor microenvironment for the restoration of cancer stem cells. Pathobiology 79(6):290–306

    Article  CAS  PubMed  Google Scholar 

  58. Berniakovich I, Giorgio M (2013) Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int J Mol Sci 14(1):2119–2134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Efimenko A, Starostina E, Kalinina N, Stolzing A (2011) Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 9:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25(9):2363–2370

    Article  CAS  PubMed  Google Scholar 

  61. Crisostomo PR, Wang Y, Markel TA, Wang M, Lahm T, Meldrum DR (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294(3):C675–C682

    Article  CAS  PubMed  Google Scholar 

  62. Konig A, Menzel T, Lynen S, Wrazel L, Rosen A, Al-Katib A et al (1997) Basic fibroblast growth factor (bFGF) upregulates the expression of bcl-2 in B cell chronic lymphocytic leukemia cell lines resulting in delaying apoptosis. Leukemia 11(2):258–265

    Article  CAS  PubMed  Google Scholar 

  63. Dias S, Shmelkov SV, Lam G, Rafii S (2002) VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood 99(7):2532–2540

    Article  CAS  PubMed  Google Scholar 

  64. Burger JA, Tsukada N, Burger M, Zvaifler NJ, Dell'Aquila M, Kipps TJ (2000) Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96(8):2655–2663

    Article  CAS  PubMed  Google Scholar 

  65. Rodini CO, Goncalves da Silva PB, Assoni AF, Carvalho VM, Okamoto OK (2018) Mesenchymal stem cells enhance tumorigenic properties of human glioblastoma through independent cell-cell communication mechanisms. Oncotarget 9(37):24766–24777

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559–1564

    Article  CAS  PubMed  Google Scholar 

  67. Massague J, Obenauf AC (2016) Metastatic colonization by circulating tumour cells. Nature 529(7586):298–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lin R, Wang S, Zhao RC (2013) Exosomes from human adipose-derived mesenchymal stem cells promote migration through Wnt signaling pathway in a breast cancer cell model. Mol Cell Biochem 383(1–2):13–20

    Article  CAS  PubMed  Google Scholar 

  69. Rhodes LV, Antoon JW, Muir SE, Elliott S, Beckman BS, Burow ME (2010) Effects of human mesenchymal stem cells on ER-positive human breast carcinoma cells mediated through ER-SDF-1/CXCR4 crosstalk. Mol Cancer 9:295

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M (2003) Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 75(3):248–255

    Article  CAS  PubMed  Google Scholar 

  71. Cassatella MA, Mosna F, Micheletti A, Lisi V, Tamassia N, Cont C et al (2011) Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29(6):1001–1011

    Article  CAS  PubMed  Google Scholar 

  72. Stagg J, Pommey S, Eliopoulos N, Galipeau J (2006) Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood 107(6):2570–2577

    Article  CAS  PubMed  Google Scholar 

  73. Zheng H, Zou W, Shen J, Xu L, Wang S, Fu YX et al (2016) Opposite effects of coinjection and distant injection of mesenchymal stem cells on breast tumor cell growth. Stem Cells Transl Med 5(9):1216–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Otsu K, Das S, Houser SD, Quadri SK, Bhattacharya S, Bhattacharya J (2009) Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells. Blood 113(18):4197–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ho IA, Toh HC, Ng WH, Teo YL, Guo CM, Hui KM et al (2013) Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 31(1):146–155

    Article  CAS  PubMed  Google Scholar 

  76. Qiao L, Xu Z, Zhao T, Zhao Z, Shi M, Zhao RC et al (2008) Suppression of tumorigenesis by human mesenchymal stem cells in a hepatoma model. Cell Res 18(4):500–507

    Article  CAS  PubMed  Google Scholar 

  77. Zhu Y, Sun Z, Han Q, Liao L, Wang J, Bian C et al (2009) Human mesenchymal stem cells inhibit cancer cell proliferation by secreting DKK-1. Leukemia 23(5):925–933

    Article  CAS  PubMed  Google Scholar 

  78. Qiao L, Xu ZL, Zhao TJ, Ye LH, Zhang XD (2008) Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett 269(1):67–77

    Article  CAS  PubMed  Google Scholar 

  79. Ji X, Zhang Z, Han Y, Song J, Xu X, Jin J et al (2016) Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo. Int J Oncol 49(5):2011–2022

    Article  CAS  PubMed  Google Scholar 

  80. Lu YR, Yuan Y, Wang XJ, Wei LL, Chen YN, Cong C et al (2008) The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther 7(2):245–251

    Article  CAS  PubMed  Google Scholar 

  81. Dasari VR, Kaur K, Velpula KK, Gujrati M, Fassett D, Klopfenstein JD et al (2010) Upregulation of PTEN in glioma cells by cord blood mesenchymal stem cells inhibits migration via downregulation of the PI3K/Akt pathway. PLoS One 5(4):e10350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ryu H, Oh JE, Rhee KJ, Baik SK, Kim J, Kang SJ et al (2014) Adipose tissue-derived mesenchymal stem cells cultured at high density express IFN-beta and suppress the growth of MCF-7 human breast cancer cells. Cancer Lett 352(2):220–227

    Article  CAS  PubMed  Google Scholar 

  83. Brennen WN, Chen S, Denmeade SR, Isaacs JT (2013) Quantification of Mesenchymal Stem Cells (MSCs) at sites of human prostate cancer. Oncotarget 4(1):106–117

    Article  PubMed  Google Scholar 

  84. Poggi A, Varesano S, Zocchi MR (2018) How to hit mesenchymal stromal cells and make the tumor microenvironment immunostimulant rather than immunosuppressive. Front Immunol 9:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Coffman LG, Pearson AT, Frisbie LG, Freeman Z, Christie E, Bowtell DD et al (2019) Ovarian carcinoma-associated mesenchymal stem cells arise from tissue-specific normal stroma. Stem Cells 37(2):257–269

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Coffman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atiya, H., Frisbie, L., Pressimone, C., Coffman, L. (2020). Mesenchymal Stem Cells in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1234. Springer, Cham. https://doi.org/10.1007/978-3-030-37184-5_3

Download citation

Publish with us

Policies and ethics