Skip to main content

Generator Topologies for Horizontal Axis Tidal Turbine

  • Conference paper
  • First Online:
ELECTRIMACS 2019

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 615))

Abstract

Over the last decade, research on technologies to exploit tidal current kinetic energy for renewable electricity generation has had a significant growth. However, as to date, there is not a consensus worldwide on standard Power Take-Off (PTO) systems, due to the current immaturity of tidal energy converter technologies. In most cases, mechanical/electrical power conversion follows well-proven technologies derived by the mature wind-energy sector. However, the peculiarities of tidal energy resource impose ad hoc technology solutions. In this paper, different generator topologies and recent developments for marine tidal energy systems are reviewed and compared. The aim is to provide an overall perspective and identify areas for further development. Among considered technologies, the direct-drive permanent magnet synchronous generator by the full-rated frequency converter (FFC) represents an appealing solution, for reduced system complexity and maintenance requirements and possibility to develop smart Maximum Power Point Tracking (MPPT) strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OECD/IEA, OECD Green Growth Studies: Energy (OECD/IEA, Paris, 2012)

    Google Scholar 

  2. IEA, Renewables 2018: Analysis and Forecasts to 2023 (IEA, Paris, 2018)

    Google Scholar 

  3. R. Pelc, R.M. Fujita, Renewable energy from the ocean. Marine Policy 26(6), 471–479 (2002)

    Article  Google Scholar 

  4. World Energy Council, Marine Energy/World Energy Resources 2016, Technical Report (World Energy Council, London, 2016)

    Google Scholar 

  5. B. Multon (ed.), Marine Renewable Energy Handbook (ISTE: John Wiley & Sons, London, 2012)

    Google Scholar 

  6. M. Beam, B. Kline, B. Elbing, W. Straka, A. Fontaine, M. Lawson, Y. Li, R. Thresher, M. Previsic, Marine hydrokinetic turbine power-take-off design for optimal performance and low impact on cost-of-energy, in 32nd International Conference on Ocean, Offshore and Arctic Engineering (OMAE 2013), France (2013)

    Google Scholar 

  7. http://modelling.seacore.online

  8. T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, Wind Energy Handbook (John Wiley & Sons, Ltd, Hoboken, NJ, 2011)

    Book  Google Scholar 

  9. C. Garrett, P. Cummins, The efficiency of a turbine in a tidal channel. J. Fluid Mech. 588, 243–251 (2007)

    Article  ADS  Google Scholar 

  10. R. Vennell, Exceeding the Betz limit with tidal turbines. Renew. Energy 55, 277–285 (2013)

    Article  Google Scholar 

  11. H. Chen; N. Aït-Ahmed; E. H. Zaïm; M. Machmoum, Marine tidal current systems: state of the art, in 2012 IEEE International Symposium on Industrial Electronics, May (2012)

    Google Scholar 

  12. G. Marsh, D. Robb, Patently innovative: Imagination in wind turbine technology continues to flourish. Refocus 8(2), 30–35 (2007)

    Article  Google Scholar 

  13. P.M. Tlali, R.-J. Wang, S. Gerber, Magnetic gear technologies: a review, in International Conference on Electrical Machines (ICEM) (2014)

    Google Scholar 

  14. J. Zhang, L. Moreau, M. Machmoum, P. Guillerm, State of the art in tidal current energy extracting technologies, 2014 First International Conference on Green Energy ICGE (2014)

    Google Scholar 

  15. D. Magagna, R. Monfardini, A. Uihlein, JRC Ocean Energy Status Report: 2016 Edition. EUR 28407 EN. JRC104799 (Publications Office of the European Union, Luxembourg, 2016)

    Google Scholar 

  16. H. Polinder, D.J. Bang, H. Li, Z. Chen, Concept Report on Generator Topologies, Mechanical & Electromagnetic Optimization, Project UpWind (2007)

    Google Scholar 

  17. Z. Chen, Characteristics of induction generators and power system stability, 2005 International Conference on Electrical Machines and Systems, September 2005

    Google Scholar 

  18. S. Benelghali, M.E.H. Benbouzid, J.F. Charpentier, Generator systems for marine current turbine applications: a comparative study. IEEE J. Ocean Eng. 37(9), 554–563 (July 2012)

    Article  ADS  Google Scholar 

  19. Z. Chen, J.M. Guerrero, F. Blaabjerg, A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. 24(8), 1859–1875 (2009)

    Article  ADS  Google Scholar 

  20. D. Bang, H. Polinder, G. Shrestha, J. Ferreria, Review of generator systems for direct-drive wind turbines, in European Wind Energy Conference & Exhibition, Belgium (2008)

    Google Scholar 

  21. A. Grauers, Design of direct-driven permanent-magnet generators for wind turbines, Ph.D. dissertation (Chalmers University of Technology, Göteborg, 1996)

    Google Scholar 

  22. H. Polinder, F.F.A. van der Pijl, G.J. de Vilder, P. Tavner, Comparison of direct-drive and geared generator concepts for wind turbines. IEEE Trans. Energy Convers. 21, 725–733 (2006)

    Article  ADS  Google Scholar 

  23. R. Poore, T. Lettenmaier, Alternative Design Study Report: WindPACT Advanced Wind Turbine Drive Train Designs Study. Report No. NREL/SR-500-33196 (NREL, Golden, CO, 2003)

    Google Scholar 

  24. H. Weh, H. Hoffmann, J. Landrath, H. Mosebach, J. Poschadel, Directly-driven permanent-magnet excited synchronous generator for variable speed operation, in Proceedings of the 1988 European Wind Energy Conference, pp. 566–572

    Google Scholar 

  25. G. Bywaters, V. John, J. Lynch, P. Mattila, G. Nortor, J. Stowell, M. Salata, O. Labath, A. Chertok, D. Hablanian, Northern Power Systems windPACT Drive Train Alternative Design Study Report. Report no. NREL/SR-500-35524 (NREL, Golden, CO, 2004)

    Google Scholar 

  26. P. Lampola, Directly driven, low-speed permanent-magnet generators for wind power applications, Ph.D. dissertation (Helsinki University of Technology, Helsinki, 2000)

    Google Scholar 

  27. M. Dubois, Optimized permanent magnet generator topologies for direct drive wind turbines, Ph.D. dissertation (Delft University of Technology, Delft, 2004)

    Google Scholar 

  28. Y. Duan; R.G. Harley, Present and future trends in wind turbine generator designs, IEEE Power Electronics and Machines in Wind Applications, June 2009.

    Google Scholar 

  29. https://theswitch.com/wave-and-tidal/permanent-magnet-generators/

  30. https://simecatlantis.com/services/turbines/

  31. http://redapt.eng.ed.ac.uk/index.php?p=library_redapt_reports

  32. https://www.alstom.com

  33. S. Benelghali, M.E.H. Benbouzid, J.F. Charpentier, Marine tidal current electric power generation technology: state of the art and current status, in Electric Machines & Drives Conference, IEMDC’07. IEEE Int. 2, 1407–1412 (2007)

    Google Scholar 

  34. Z. Zhou; F. Scuiller; J. F. Charpentier; M. Benbouzid; T. Tang, An up-to-date review of large marine tidal current turbine technologies, in IEEE International Power Electronics and Application Conference and Exposition, November 2014

    Google Scholar 

  35. http://www.emec.org.uk/about-us/our-tidal-clients/

  36. https://www.andritz.com/products-en/hydro/products/tidal-current-turbines

  37. http://www.sabella.fr

  38. https://www.schottel.de

Download references

Acknowledgements

The work has been partially supported by the H2020 MaRINET-2 Project (GA 731084) and by CNR under the ULYSSES Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Giulii Capponi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafiei, M., Salvatore, F., Giulii Capponi, F. (2020). Generator Topologies for Horizontal Axis Tidal Turbine. In: Zamboni, W., Petrone, G. (eds) ELECTRIMACS 2019. Lecture Notes in Electrical Engineering, vol 615. Springer, Cham. https://doi.org/10.1007/978-3-030-37161-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37161-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37160-9

  • Online ISBN: 978-3-030-37161-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics