Skip to main content

Thermal Properties

  • Chapter
  • First Online:
Gallium Oxide

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 293))

Abstract

In this chapter, an overview of the current research progress on the thermal properties of beta-gallium oxide (β-Ga2O3) is provided. Thermal properties of β-Ga2O3 are of great significance to the device reliability and performance in its potential applications. Previous research through both computational and experimental studies on β-Ga2O3 using various methods is reviewed. The most notable findings are the relatively low and highly anisotropic thermal conductivity . At room temperature, the [010] direction has the highest thermal conductivity of around 25 W/mK, while that in the [100] direction is measured to be the lowest, which is around 13 W/mK. We also make comparison between β-Ga2O3 and GaN , another widely used semiconductor for power electronics . The relatively low thermal conductivity of β-Ga2O3 compared to GaN may present a major challenge for its potential applications. Another important thermal property, heat capacity , of β-Ga2O3 at room temperature is measured to be 18.7 J/mol K. On the other hand, the effective thermal conductivity in β-Ga2O3 thin film is shown to be larger than other gate oxides, providing a possibility of using it as gate dielectrics in GaN device contacts. The thermal properties discussed in this chapter might be useful for thermal management and design of β-Ga2O3 devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T.L. Bergman, F.P. Incropera, D.P. DeWitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, 2011)

    Google Scholar 

  2. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, MBE grown Ga2O3 and its power device applications. J. Cryst. Growth 378, 591 (2013)

    Article  CAS  Google Scholar 

  3. H. Peelaers, C.G. Van de Walle, Brillouin zone and band structure of β‐Ga2O3. Phys. Status Solidi B 252, 828 (2015)

    Article  CAS  Google Scholar 

  4. M.D. Santia, N. Tandon, J. Albrecht, Lattice thermal conductivity in β−Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015)

    Article  CAS  Google Scholar 

  5. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, 2005)

    Google Scholar 

  6. D. Broido, M. Malorny, G. Birner, N. Mingo, D. Stewart, Intrinsic lattice thermal conductivity of semiconductors from first principles. Appl. Phys. Lett. 91, 231922 (2007)

    Article  CAS  Google Scholar 

  7. A. Ward, D. Broido, D.A. Stewart, G. Deinzer, Ab initio theory of the lattice thermal conductivity in diamond. Phys. Rev. B 80, 125203 (2009)

    Article  CAS  Google Scholar 

  8. K. Esfarjani, G. Chen, H.T. Stokes, Heat transport in silicon from first-principles calculations. Phys. Rev. B 84, 085204 (2011)

    Article  CAS  Google Scholar 

  9. J. Garg, N. Bonini, B. Kozinsky, N. Marzari, Role of disorder and anharmonicity in the thermal conductivity of silicon-germanium alloys: a first-principles study. Phys. Rev. Lett. 106, 045901 (2011)

    Article  CAS  Google Scholar 

  10. T. Luo, J. Garg, J. Shiomi, K. Esfarjani, G. Chen, Gallium arsenide thermal conductivity and optical phonon relaxation times from first-principles calculations. EPL (Europhys. Lett.) 101, 16001 (2013)

    Article  CAS  Google Scholar 

  11. Z. Liu, X. Wu, V. Varshney, J. Lee, G. Qin, M. Hu, A.K. Roy, T. Luo, Bond saturation significantly enhances thermal energy transport in two-dimensional pentagonal materials. Nano Energy 45, 1 (2018)

    Article  CAS  Google Scholar 

  12. A. Maradudin, A. Fein, Scattering of neutrons by an anharmonic crystal. Phys. Rev. 128, 2589 (1962)

    Article  CAS  Google Scholar 

  13. G.P. Srivastava, The Physics of Phonons (CRC Press, 1990)

    Google Scholar 

  14. A. Togo, I. Tanaka, First principles phonon calculations in materials science. Scr. Mater. 108, 1 (2015)

    Article  CAS  Google Scholar 

  15. W. Li, J. Carrete, N.A. Katcho, N. Mingo, ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747 (2014)

    Article  CAS  Google Scholar 

  16. P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  17. J.P. Perdew, W. Yue, Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation. Phys. Rev. B 33, 8800 (1986)

    Article  CAS  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  19. J. Åhman, G. Svensson, J. Albertsson, A reinvestigation of [beta]-gallium oxide. Acta Crystallogr. C 52, 1336 (1996)

    Article  Google Scholar 

  20. X. Wu, J. Lee, V. Varshney, J.L. Wohlwend, A.K. Roy, T. Luo, Thermal conductivity of wurtzite zinc-oxide from first-principles lattice dynamics–a comparative study with gallium nitride. Sci. Rep. 6, 22504 (2016)

    Article  CAS  Google Scholar 

  21. M. Methfessel, A. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)

    Article  CAS  Google Scholar 

  22. Z. Guo et al., Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett. 106, 111909 (2015)

    Article  CAS  Google Scholar 

  23. M. Slomski, N. Blumenschein, P. Paskov, Anisotropic thermal conductivity of β-Ga2O3 at elevated temperatures: Effect of Sn and Fe dopants. J. Muth, T. Paskova, J. Appl. Phys. 121, 235104 (2017)

    Article  CAS  Google Scholar 

  24. M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Temperature-dependent thermal conductivity in Mg-doped and undoped β-Ga2O3 bulk-crystals. Semicond. Sci. Technol. 30, 024006 (2015)

    Google Scholar 

  25. M. Handwerg, R. Mitdank, Z. Galazka, S.F. Fischer, Temperature-dependent thermal conductivity and diffusivity of a Mg-doped insulating β-Ga2O3 single crystal along [100], [010] and [001]. Semicond. Sci. Technol. 31, 125006 (2016)

    Article  CAS  Google Scholar 

  26. E.G. Víllora, K. Shimamura, T. Ujiie, K. Aoki, Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature. Appl. Phys. Lett. 92, 202118 (2008)

    Article  CAS  Google Scholar 

  27. A. Ward, D.A. Broido, Intrinsic phonon relaxation times from first-principles studies of the thermal conductivities of Si and Ge. Phys. Rev. B 81, 085205 (2010)

    Article  CAS  Google Scholar 

  28. L. Lindsay, D. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)

    Article  CAS  Google Scholar 

  29. L. Lindsay, D. Broido, T. Reinecke, Ab initio thermal transport in compound semiconductors. Phys. Rev. B 87, 165201 (2013)

    Article  CAS  Google Scholar 

  30. T. Luo, G. Chen, Nanoscale heat transfer – from computation to experiment. Phys. Chem. Chem. Phys. 15, 3389 (2013)

    Article  CAS  Google Scholar 

  31. L. Lindsay, D. Broido, Three-phonon phase space and lattice thermal conductivity in semiconductors. J. Phys.: Condens. Matter 20, 165209 (2008)

    Google Scholar 

  32. R. Guo, X. Wang, B. Huang, Thermal conductivity of skutterudite CoSb3 from first principles: substitution and nanoengineering effects. Sci. Rep. 5, 7806 (2015)

    Article  CAS  Google Scholar 

  33. E. Sichel, Thermal conductivity of GaN, 25-360 K. J. Phys. Chem. Solids 38, 330 (1977)

    Article  CAS  Google Scholar 

  34. A. Jeżowski, B.A. Danilchenko, M. Boćkowski, I. Grzegory, S. Krukowski, T. Suski, T. Paszkiewicz, Thermal conductivity of GaN crystals in 4.2–300 K range. Solid State Commun. 128, 69 (2003)

    Article  CAS  Google Scholar 

  35. G.A. Slack, L.J. Schowalter, D. Morelli, J.A. Freitas, ‘Some effects of oxygen impurities on AlN and GaN. J. Cryst. Growth 246, 287 (2002)

    Article  CAS  Google Scholar 

  36. L. Lindsay, D.A. Broido, T.L. Reinecke, Thermal conductivity and large isotope effect in GaN from first principles. Phys. Rev. Lett. 109, 095901 (2012)

    Article  CAS  Google Scholar 

  37. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 55, 1202A2 (2016)

    Google Scholar 

  38. P. Jiang, X. Qian, R. Yang, Time-domain thermoreflectance (TDTR) measurements of anisotropic thermal conductivity using a variable spot size approach. Rev. Sci. Instrum. 88, 074901 (2017)

    Article  CAS  Google Scholar 

  39. D.G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119 (2004)

    Article  CAS  Google Scholar 

  40. A.J. Schmidt, Optical characterization of thermal transport from the nanoscale to the macroscale. Ph.D. Dissertation, Massachusetts Institute of Technology, 2008

    Google Scholar 

  41. H. He, M.A. Blanco, R. Pandey, Electronic and thermodynamic properties of β-Ga2O3. Appl. Phys. Lett. 88, 261904 (2006)

    Article  CAS  Google Scholar 

  42. Z. Galazka et al., On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth 404, 184 (2014)

    Article  CAS  Google Scholar 

  43. D.G. Cahill, Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61, 802 (1990)

    Article  CAS  Google Scholar 

  44. T. Lin, H. Chiu, P. Chang, L. Tung, C. Chen, M. Hong, J. Kwo, W. Tsai, Y. Wang, High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics. Appl. Phys. Lett. 93, 033516 (2008)

    Article  CAS  Google Scholar 

  45. J. Johnson et al., Gd2O3/GaN metal-oxide-semiconductor field-effect transistor. Appl. Phys. Lett. 77, 3230 (2000)

    Article  CAS  Google Scholar 

  46. E.T. Swartz, R.O. Pohl, Thermal boundary resistance. Rev. Mod. Phys. 61, 605 (1989)

    Article  Google Scholar 

  47. C.J. Szwejkowski, N.C. Creange, K. Sun, A. Giri, B.F. Donovan, C. Constantin, P.E. Hopkins, Size effects in the thermal conductivity of gallium oxide (β-Ga2O3) films grown via open-atmosphere annealing of gallium nitride. J. Appl. Phys. 117, 084308 (2015)

    Article  CAS  Google Scholar 

  48. N. Blumenschein, M. Slomski, P. Paskov, F. Kaess, M. Breckenridge, in Proceedings of SPIE 10533, pp. 105332G, 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tengfei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Z., Luo, T. (2020). Thermal Properties. In: Higashiwaki, M., Fujita, S. (eds) Gallium Oxide. Springer Series in Materials Science, vol 293. Springer, Cham. https://doi.org/10.1007/978-3-030-37153-1_29

Download citation

Publish with us

Policies and ethics