Skip to main content

Detection of HIV-1 Protease Cleavage Sites via Hidden Markov Model and Physicochemical Properties of Amino Acids

  • Chapter
  • First Online:
Numerical Solutions of Realistic Nonlinear Phenomena

Part of the book series: Nonlinear Systems and Complexity ((NSCH,volume 31))

Abstract

The detection of the cleavage side in Chip-seq data is one of the main interests to find the lock-and-key relationship between enzymes and prohibits in certain diseases such as AIDS and to produce the proper inhibitors for these illnesses. For this detection, different approaches like support vector machines and artificial neural networks have been suggested. In this study, we use the hidden Markov model (HMM) for the cleavage site detection. In our application, initially, we comprehensively explain the mathematical details of HMM and the inference of the model parameters, and then we discuss the effect of various clustering approaches both in feature selection and state formation. We demonstrate the calculation of each step in a toy and benchmark dataset and evaluate the accuracy of estimates with other approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bezdek J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  2. Cai, Y.D., Chou, K.C.: Artificial neural network model for predicting HIV protease cleavage sites in protein. Adv. Eng. Softw. 29(2), 119–128 (1998)

    Article  Google Scholar 

  3. Cai, Y., Liu, X., Xu, X., Chou, K.: Support vector machines for predicting HIV protease cleavage sites in protein. J. Comput. Chem. 23, 267–274 (2002)

    Article  Google Scholar 

  4. Chormungea, S., Jenab, S.: Correlation based feature selection with clustering for high dimensional data. J. Electr. Syst. Inf. Technol. (2018). doi: https://doi.org/10.1016/j.jesit.2017.06.004

    Article  Google Scholar 

  5. Durbin, R., Eddy, S., Krogh, A., Mitchison, G.: Biological Sequence Analysis. Cambridge, UK (1998)

    Book  Google Scholar 

  6. Eisner, J.: An interactive spreadsheet for teaching the forward-backward algorithm. In: Proc. of the ACL Workshop on Effective Tools and Methodologies for Teaching NLP and CL 10–18 (2002)

    Google Scholar 

  7. Gallo, R.C., Salahuddin, S.Z., Popovic, M., Shearer, G.M., Kaplan, M., Haynes, B.F., Palker, T.J., Redfield, R., Oleske, J., Safai, B., White, Cl., Foster, P., Markham, P.D.: Frequent detect on and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224(4648), 500–503 (1984)

    Article  Google Scholar 

  8. Gustafson, D.E., Kessel, W.C.: Fuzzy clustering with a fuzzy covariance matrix. Proc. IEEE CDC 761–766 (1978)

    Google Scholar 

  9. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-means clustering algorithm. J. R. Stat. Soc. Ser. C (Appl. Stat.) 28, 100–108 (1979)

    Article  Google Scholar 

  10. Jaeger, S., Chen, S.-S.: Information fusion for biological prediction. J. Data Sci. 8, 269–288 (2010)

    Google Scholar 

  11. Jayavardhana Rama, G.L., Palaniswami, M.: Cleavage knowledge extraction in HIV-1 protease using hidden Markov model. In: Proc. 2nd International Conference on Intelligent Sensing and Information Processing, pp. 469–473 (2005)

    Google Scholar 

  12. Jianying, H., Brown, M.K., Turin, W.: HMM based online handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 18, 1039–1045 (1996)

    Article  Google Scholar 

  13. Juang, B., Rabiner, L.: Hidden Markov models for speech recognition. Technometrics 33(3), 251–272 (1991)

    Article  MathSciNet  Google Scholar 

  14. Kim, G., Kim, Y., Lim, H., Kim, H.: An MLP-based feature subset selection for HIV-1 protease cleavage site analysis. Artif. Intell. Med. 48, 83–89 (2010)

    Article  Google Scholar 

  15. Kohl, N.E., Emini, E.A., Schlief, W.A., Davis, L.J., Heimbach, J., Dixon, R.A.F., Scolnik, E.M., Sigal, I.S.: Active human immunodeficiency virus protease is required for viral infectivity. Proc. Nutl. Sci. USA. 85(15), 4686–4690 (1988)

    Article  Google Scholar 

  16. Kouemou, G.L.: History and Theoretical Basics of Hidden Markov Models. Hidden Markov Models Przemyslaw Dymarski, IntechOpen (2011). doi: https://doi.org/10.5772/15205

    Google Scholar 

  17. Krishnapuram, R., Joshi, A., Nasraoui, O., Yi, L.: Low-complexity fuzzy relational clustering algorithms for Web mining. IEEE Trans. Fuzzy Syst. 9(4), 595–607 (2001)

    Article  Google Scholar 

  18. Miller, M., Schneider, J., Sathyanarayana, B.K., Toth, M.V., Marshall, G.R., Clawson, L., Selk, L., Kent, S.B.H., Wlodawer, A.: Structure of complex of synthetic HIV-l protease with a substrate-based inhibitor at 2.3 A resolution. Science 246, 1149–1152 (1989)

    Article  Google Scholar 

  19. Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised feature selection using feature similarity. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 301–312 (2002)

    Article  Google Scholar 

  20. Munch, K., Krogh, A.: Automatic generation of gene finders for eukaryotic species. BMC Bioinform. 7, 263 (2006)

    Article  Google Scholar 

  21. Murtagh, F.: Multidimensional Clustering Algorithms. Physica-Verlag (1985)

    Google Scholar 

  22. Nakai, K., Kidera, A., Kanehisa, M.: Cluster analysis of amino acid indices for prediction of protein structure and function. Protein Eng. 2, 93–100 (1988)

    Article  Google Scholar 

  23. Nanni, L.: Comparison among feature extraction methods for HIV-1 protease cleavage site prediction. Pattern Recognit. 39(4), 711–713 (2006)

    Article  Google Scholar 

  24. Niu, B., Yuan, X.C., Roeper, P., Su, Q., Peng, C.R., Yin, J.Y., Ding, J., Li, H., Lu, W.C.: HIV-1 protease cleavage site prediction based on two-stage feature selection method. Protein Pept. Lett. 20, 290–298 (2013)

    Google Scholar 

  25. Pachter, L., Alexandersson, M., Cawley, S.: Applications of generalized pair hidden Markov models to alignment and gene finding problems. J. Comput. Biol. 9, 389–399 (2002)

    Article  Google Scholar 

  26. Park, H., Jun, C.: A simple and fast algorithm for k-medoids clustering. Expert Syst. Appl. 36, 3336–3341 (2009)

    Article  Google Scholar 

  27. Rögnvaldsson, T., You, L., Garwicz, D.: State of the art prediction of HIV-1 protease cleavage sites. Bioinformatics 31, 1204–1210 (2015)

    Article  Google Scholar 

  28. Schroff, R.W., Gottlieb, M.S., Prince, H.E., Chai, L.L., Fahey, J.L.: Immunological studies of homosexual men with immunodeficiency and Kaposi’s sarcoma. Clin. Immunol. Immunopathol. 27(3), 300–314 (1983)

    Article  Google Scholar 

  29. Sesane, M., Geyer, S.: The perceptions of community members regarding the role of social workers in enhancing social capital in metropolitan areas to manage HIV and AIDS. Social Work 53(1), 1–26 (2017)

    Google Scholar 

  30. Starner, T., Pentland, A.: Real-time American Sign Language recognition from video using hidden Markov models. In: Proc. of International Symposium on Computer Vision - ISCV, pp. 265–270 (1995)

    Google Scholar 

  31. Stultz, C.M.: Structural analysis based on state-space modeling. Protein Sci. 2, 305–314 (1993)

    Article  Google Scholar 

  32. Strug, D.L., Grube, B.A., Beckerman, N.L.: Challenges and changing roles in HIV/AIDS. Soc. Work Health Care 35(4), 1–19 (2008)

    Article  Google Scholar 

  33. Thompson, T.B., Chou, K.C., Zheng, C.: Neural network prediction of the HIV-1 protease cleavage sites. J. Theor. Biol. 177(4), 369–379 (1995)

    Article  Google Scholar 

  34. Turhal, U., Gök, M., Durgut, A.: Comparison among feature encoding techniques for HIV-1 protease cleavage specificity. Int. J. Intell. Syst. Appl. Eng. 3(2), 62–66 (2015)

    Article  Google Scholar 

  35. UNAIDS.: http://www.unaids.org/en/resources/fact-sheet

  36. White, J.V.: Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math. Biosci. 119, 35–75 (1994)

    Article  Google Scholar 

  37. Zhang, C., Bickis, M.G., Wu, F.X., Kusalik, A.J.: Optimally-connected hidden Markov models for predicting MHC-binding peptides. J. Bioinform. Comput. Biol. 4(5), 959–980 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the EU 7th Framework project, called COSTNET (Project no: CA15109), and the BAP project at the Middle East Technical University (Project no: BAP-08-11-2017-035) for their supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vilda Purutçuoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, E.D., Purutçuoğlu, V., Purutçuoğlu, E. (2020). Detection of HIV-1 Protease Cleavage Sites via Hidden Markov Model and Physicochemical Properties of Amino Acids. In: Machado, J., Özdemir, N., Baleanu, D. (eds) Numerical Solutions of Realistic Nonlinear Phenomena. Nonlinear Systems and Complexity, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-37141-8_10

Download citation

Publish with us

Policies and ethics