Oceanic Games: Centralization Risks and Incentives in Blockchain Mining

Conference paper
Part of the Springer Proceedings in Business and Economics book series (SPBE)


To participate in the distributed consensus of permissionless blockchains, prospective nodes—or miners—provide proof of designated, costly resources. However, in contrast to the intended decentralization, current data on blockchain mining unveils increased concentration of these resources in a few major entities, typically mining pools. To study strategic considerations in this setting, we employ the concept of Oceanic Games [27]. Oceanic Games have been used to analyze decision making in corporate settings with small numbers of dominant players (shareholders) and large numbers of individually insignificant players, the ocean. Unlike standard equilibrium models, they focus on measuring the value (or power) per entity and per unit of resource in a given distribution of resources. These values are viewed as strategic components in coalition formations, mergers and resource acquisitions. Considering such issues relevant to blockchain governance and long-term sustainability, we adapt oceanic games to blockchain mining and illustrate the defined concepts via examples. The application of existing results reveals incentives for individual miners to merge in order to increase the value of their resources. This offers an alternative perspective to the observed centralization and concentration of mining power. Beyond numerical simulations, we use the model to identify issues relevant to the design of future cryptocurrencies and formulate prospective research questions.


Blockchain Cryptocurrencies Resources Mining pools Oceanic games Values 


  1. 1.
    Arnosti, N., Weinberg, S.M.: Bitcoin: A natural oligopoly. In: 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, pp. 5:1–5:1. San Diego, USA (2019).
  2. 2.
    Aumann, R.J.: Markets with a continuum of traders. Econometrica 32(1/2), 39–50 (1964)Google Scholar
  3. 3.
    Badertscher, C., Garay, J., Maurer, U., Tschudi, D., Zikas, V.: But why does it work? a rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology—EUROCRYPT 2018, pp. 34–65. Springer International Publishing, Cham (2018)Google Scholar
  4. 4.
    Badertscher, C., Gaži, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 913–930. CCS ’18, ACM, USA (2018).
  5. 5.
    Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies Without Proof of Work. In: Clark, J., Meiklejohn, S., Ryan, P.Y., Wallach, D., Brenner, M., Rohloff, K. (eds.) Financial Cryptography and Data Security, pp. 142–157. Springer, Heidelberg (2016)Google Scholar
  6. 6.
    Bonneau, J.: Hostile blockchain takeovers (short paper). In: Proceedings of the 5th IFCA Workshop on Bitcoin and Blockchain Research (2018)Google Scholar
  7. 7.
    Bonneau, J., Felten, E., Goldfeder, S., Kroll, J., Narayanan, A.: Why Buy When You Can Rent? Bribery Attacks on Bitcoin-Style Consensus. In: Financial Cryptography Workshops (2016)Google Scholar
  8. 8.
    Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: Research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015 IEEE Symposium on Security and Privacy, pp. 104–121 (2015).
  9. 9.
    Brünjes, L., Kiayias, A., Koutsoupias, E., Stouka, A.P.: Reward Sharing Schemes for Stake Pools (2018). arXiv:1807.11218
  10. 10.
    Buterin, V., Reijsbergen, D., Leonardos, S., Piliouras, G.: Incentives in Ethereum’s hybrid casper protocol. In: ICBC 2019. Seoul, Korea (2019).
  11. 11.
    Eyal, I., Sirer, E.: Majority is not enough: bitcoin mining is vulnerable. In: Christin, N., Safavi-Naini, R. (eds.) Financial Cryptography and Data Security, pp. 436–454. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Eyal, I.: The Miner’s Dilemma. In: Proceedings of the 2015 IEEE Symposium on Security and Privacy. SP ’15, pp. 89–103. IEEE Computer Society, USA (2015).
  13. 13.
    Fanti, G., Kogan, L., Oh, S., Ruan, K., Viswanath, P., Wang, G.: Compounding of Wealth in Proof-of-Stake Cryptocurrencies (2018). ArXiv e-printsGoogle Scholar
  14. 14.
    Fisch, B., Pass, R., Shelat, A.: Socially optimal mining pools. In: R. Devanur, N., Lu, P. (eds.) Web and Internet Economics, pp. 205–218. Springer International Publishing, Cham (2017)Google Scholar
  15. 15.
    Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: analysis and applications. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 281–310. Springer, Berlin (2015)Google Scholar
  16. 16.
    Garay, J., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology - CRYPTO 2017, pp. 291–323. Springer International Publishing, Cham (2017)Google Scholar
  17. 17.
    Garay, J.A., Kiayias, A., Leonardos, N., Panagiotakos, G.: Bootstrapping the blockchain, with applications to consensus and fast PKI setup. In: Public Key Cryptography (2018).
  18. 18.
    Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling byzantine agreements for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Principles. SOSP ’17, pp. 51–68. ACM, USA (2017).
  19. 19.
    Hauert, C., De Monte, S., Hofbauer, J., Sigmund, K.: Volunteering as Red Queen Mechanism for Cooperation in Public Goods Games. Science 296(5570), 1129–1132 (2002).
  20. 20.
    Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic analysis of DDoS attacks against bitcoin mining pools. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) Financial Cryptography and Data Security, pp. 72–86. Springer, Heidelberg (2014)Google Scholar
  21. 21.
    Kiayias, A., Russell, A., David, B., Oliynykov, R.: ouroboros: A provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) Advances in Cryptology –CRYPTO 2017. pp. 357–388. Springer International Publishing, Cham (2017).
  22. 22.
    Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining games. In: Proceedings of the 2016 ACM Conference on Economics and Computation, pp. 365–382. ACM, USA (2016)Google Scholar
  23. 23.
    Kleinberg, R., Piliouras, G., Tardos, E.: Multiplicative updates outperform generic no-regret learning in congestion games: extended abstract. In: Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing. STOC ’09, pp. 533–542. ACM, USA (2009).
  24. 24.
    Laszka, A., Johnson, B., Grossklags, J.: When Bitcoin mining pools run dry. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) Financial Cryptography and Data Security, pp. 63–77. Springer, Heidelberg (2015)Google Scholar
  25. 25.
    Leonardos, S., Reijsbergen, D., Piliouras, G.: Weighted voting on the blockchain: Improving consensus in proof of stake protocols. In: ICBC 2019. Seoul, Korea (2019).
  26. 26.
    Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bitcoin mining pools: a cooperative game theoretic analysis. In: Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems. AAMAS ’15, pp. 919–927. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2015)Google Scholar
  27. 27.
    Milnor, J.W., Shapley, L.S.: Values of Large Games II: Oceanic Games. Mathematics of Operations Research 3(4), 290–307 (1978).
  28. 28.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008). [Accessed: 14 Nov 2018]
  29. 29.
    Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: generalizing selfish mining and combining with an eclipse attack. In: 2016 IEEE European Symposium on Security and Privacy (EuroS P), pp. 305–320 (2016).
  30. 30.
    Pass, R., Shi, E.: Thunderella: blockchains with optimistic instant confirmation. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology—EUROCRYPT 2018, pp. 3–33. Springer International Publishing, Cham (2018).
  31. 31.
    Shapiro, N.Z., Shapley, L.S.: Values of large games, I: a limit theorem. Math. Oper. Res. 3(1), 1–9 (1978).
  32. 32.
    Shapley, L.S.: A value for n-person games. In: Roth, A.E. (ed.) The shapley value: essays in Honor of Lloyd S. Shapley, pp. 31–40. Cambridge University Press, Cambridge (1988).
  33. 33.
    Shitovitz, B.: Oligopoly in markets with a continuum of traders. Econometrica 41(3), 467–501 (1973)Google Scholar
  34. 34.
    Sompolinsky, Y., Zohar, A.: Bitcoin’s Underlying Incentives. Commun. ACM 61(3), 46–53 (2018).
  35. 35.
    Wong, T.: An application of game theory to corporate governance. Omega 17(1), 59–67 (1989).
  36. 36.
    Zeigler, B., Praehofer, H., Kim, T.: Theory of Modeling and Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems, 2nd edn. Academic Press (2000)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.National and Kapodistrian University of AthensZografouGreece
  2. 2.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations