Advertisement

Exploring the Characterization and Classification of EEG Signals for a Computer-Aided Epilepsy Diagnosis System

  • Emil Vega-GualánEmail author
  • Andrés VargasEmail author
  • Miguel BecerraEmail author
  • Ana Umaquinga
  • Jaime A. RiascosEmail author
  • Diego Peluffo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11976)

Abstract

Epilepsy occurs when localized electrical activity of neurons suffer from an imbalance. One of the most adequate methods for diagnosing and monitoring is via the analysis of electroencephalographic (EEG) signals. Despite there is a wide range of alternatives to characterize and classify EEG signals for epilepsy analysis purposes, many key aspects related to accuracy and physiological interpretation are still considered as open issues. In this paper, this work performs an exploratory study in order to identify the most adequate frequently-used methods for characterizing and classifying epileptic seizures. In this regard, a comparative study is carried out on several subsets of features using four representative classifiers: Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM). The framework uses a well-known epilepsy dataset and runs several experiments for two and three classification problems. The results suggest that DWT decomposition with SVM is the most suitable combination.

Keywords

Electroencephalogram (EEG) Epilepsy diagnosis K-Nearest Neighbors (KNN) Linear Discriminant Analysis (LDA) Quadratic Discriminant Analysis (QDA) Support Vector Machine (SVM) 

Notes

Acknowledgments

Authors thank to the SDAS Research Group (www.sdas-group.com) for its valuable support.

References

  1. 1.
    Bajaj, V., Pachori, R.B.: EEG signal classification using empirical mode decomposition and support vector machine. In: Deep, K., Nagar, A., Pant, M., Bansal, J.C. (eds.) Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20-22, 2011. AISC, vol. 131, pp. 623–635. Springer, New Delhi (2012).  https://doi.org/10.1007/978-81-322-0491-6_57CrossRefGoogle Scholar
  2. 2.
    Christensen, J., Sidenius, P.: Epidemiology of epilepsy in adults: implementing the ILAE classification and terminology into population-based epidemiologic studies. Epilepsia 53, 14–17 (2012)CrossRefGoogle Scholar
  3. 3.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)zbMATHGoogle Scholar
  4. 4.
    Hall, M.A.: Correlation-based feature subset selection for machine learning. Ph.D. thesis, University of Waikato, Hamilton, New Zealand (1999)Google Scholar
  5. 5.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  6. 6.
    Ocak, H.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications 36(2), 2027–2036 (2009)CrossRefGoogle Scholar
  7. 7.
    Qazi, K.I., Lam, H., Xiao, B., Ouyang, G., Yin, X.: Classification of epilepsy using computational intelligence techniques. CAAI Trans. Intell. Technol. 1(2), 137 – 149 (2016). https://doi.org/10.1016/j.trit.2016.08.001, http://www.sciencedirect.com/science/article/pii/S2468232216300142
  8. 8.
    Qiuyi, W., Ernest, F.: Epileptic Seizure Recognition Data Set. UCI Machine learning repository (2017). https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
  9. 9.
    Stafstrom, C.E., Carmant, L.: Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harbor Perspect. Med. 5(6), a022426 (2015).  https://doi.org/10.1101/cshperspect.a022426CrossRefGoogle Scholar
  10. 10.
    Tsipouras, M.G.: Spectral information of EEG signals with respect to epilepsy classification. EURASIP J. Adv. Sig. Process. 2019(1), 10 (2019).  https://doi.org/10.1186/s13634-019-0606-8
  11. 11.
    Übeyli, E.D.: Statistics over features: EEG signals analysis. Comput. Biol. Med. 39(8), 733–741 (2009)CrossRefGoogle Scholar
  12. 12.
    Wang, L., et al.: Automatic Epileptic Seizure Detection in EEG Signals Using Multi-Domain Feature Extraction and Nonlinear Analysis, May 2017. https://www.mdpi.com/1099-4300/19/6/222
  13. 13.
    Zhou, M., et al.: Epileptic seizure detection based on EEG signals and CNN. Front. Neuroinformatics 12, 95–95 (2018).  https://doi.org/10.3389/fninf.2018.00095, https://www.ncbi.nlm.nih.gov/pubmed/30618700, 30618700[pmid]

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Yachay Tech UniversityUrcuquiEcuador
  2. 2.Institución Universitaria Pascual BravoMedellí­nColombia
  3. 3.SDAS Research GroupUrcuquiEcuador
  4. 4.Corporación Universitaria Autónoma de NariñoPastoColombia
  5. 5.Universidad Técnica del NorteIbarraEcuador

Personalised recommendations