Skip to main content

A Systematic Review of Different Data Compression Technique of Cloud Big Sensing Data

  • 893 Accesses

Part of the Lecture Notes on Data Engineering and Communications Technologies book series (LNDECT,volume 44)


Sensing devices like camera, satellite, earthquake monitoring, video etc., are producing large number of data. Big data techniques paves the way for the handling the more number of data along with streaming data. Cloud computing technology make it easy to store, access and manage the data with low cost. The data compression techniques helps to minimize the data in the cloud and store the data effectively. The aims of the study is to provide a systematic review of the data compression on big sensing processing. The image compression is used to minimize the size effectively and useful for the cloud environment. The deduplication technique is another method is used to compress the data in the cloud and helps in minimize the size. The clustering based compression technique process the cluster for similar data. The three kinds of compression technique in the cloud are investigated in this study. The investigation of this methods shows that the compression technique is still need to be increased in the manner of scalability and flexibility.


  • Big data
  • Big sensing processing
  • Cloud computing
  • Clustering based compression
  • Data compression
  • And scalability

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-37051-0_25
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-37051-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.


  1. Nguyen, T.T., Nguyen, T.T.T., Quoc, A.V.L., Nguyen, V.H., Liew, A.W.C., Stantic, B.: Multi-label classification via label correlation and first order feature dependance in a data stream. Pattern Recogn. 90, 35–51 (2019)

    CrossRef  Google Scholar 

  2. Yu, Y.U., Guo, Z.W.: Sensor data compression based on MapReduce. J. China Univ. Posts Telecommun. 21, 60–66 (2014)

    CrossRef  Google Scholar 

  3. Jung, E.S., Kettimuthu, R., Vishwanath, V.: Cluster-to-cluster data transfer with data compression over wide-area networks. J. Parallel Distrib. Comput. 79, 90–103 (2015)

    CrossRef  Google Scholar 

  4. Tabata, K., Sato, M., Kudo, M.: Data compression by volume prototypes for streaming data. Pattern Recogn. 43, 3162–3176 (2010)

    CrossRef  Google Scholar 

  5. Chłopkowski, M., Walkowiak, R.: A general purpose lossless data compression method for GPU. J. Parallel Distrib. Comput. 75, 40–52 (2015)

    CrossRef  Google Scholar 

  6. Shi, Z., Sun, X., Wu, F.: Photo album compression for cloud storage using local features. IEEE J. Emerg. Sel. Top. Circuits Syst. 4, 17–28 (2014)

    CrossRef  Google Scholar 

  7. Parikh, S.S., Ruiz, D., Kalva, H., Fernández-Escribano, G., Adzic, V.: High bit-depth medical image compression with HEVC. IEEE J. Biomed. Health Inform. 22, 552–560 (2018)

    CrossRef  Google Scholar 

  8. Hua, Y., Liu, X., Feng, D.: Cost-efficient remote backup services for enterprise clouds. IEEE Trans. Ind. Inform. 12, 1650–1657 (2016)

    CrossRef  Google Scholar 

  9. Yang, C., Zhang, X., Zhong, C., Liu, C., Pei, J., Ramamohanarao, K., Chen, J.: A spatiotemporal compression based approach for efficient big data processing on cloud. J. Comput. Syst. Sci. 80, 1563–1583 (2014)

    MathSciNet  CrossRef  Google Scholar 

  10. Deng, Z., Han, W., Wang, L., Ranjan, R., Zomaya, A.Y., Jie, W.: An efficient online direction-preserving compression approach for trajectory streaming data. Futur. Gener. Comput. Syst. 68, 150–162 (2017)

    CrossRef  Google Scholar 

  11. Hou, J., Chau, L.P., Magnenat-Thalmann, N., He, Y.: Low-latency compression of mocap data using learned spatial decorrelation transform. Comput. Aided Geom. Des. 43, 211–225 (2016)

    MathSciNet  CrossRef  Google Scholar 

  12. Hsu, W.Y.: Clustering-based compression connected to cloud databases in telemedicine and long-term care applications. Telemat. Inform. 34, 299–310 (2017)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to I. Sandhya Rani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sandhya Rani, I., Venkateswarlu, B. (2020). A Systematic Review of Different Data Compression Technique of Cloud Big Sensing Data. In: Smys, S., Senjyu, T., Lafata, P. (eds) Second International Conference on Computer Networks and Communication Technologies. ICCNCT 2019. Lecture Notes on Data Engineering and Communications Technologies, vol 44. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37050-3

  • Online ISBN: 978-3-030-37051-0

  • eBook Packages: EngineeringEngineering (R0)