Multiple Eisenstein Series and q-Analogues of Multiple Zeta Values

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 314)

Abstract

This work is an example driven overview article of recent works on the connection of multiple zeta values, modular forms and q-analogues of multiple zeta values given by multiple Eisenstein series.

Keywords

Multiple zeta values q-analogues of multiple zeta values Multiple Eisenstein series Modular forms

Notes

Acknowledgements

This paper has served as the introductory part of my cumulative thesis written at the University of Hamburg. First of all I would like to thank my supervisor Ulf Kühn for his continuous, encouraging and patient support during the last years. Besides this I also want to thank several people for supporting me during my PhD project by whether giving me suggestion and ideas, letting me give talks on conferences and seminars, proof reading papers or having general discussions on this topic with me. A big “thank you” goes therefore to Olivier Bouillot, Kathrin Bringmann, David Broadhurst, Kurusch Ebrahimi-Fard, Herbert Gangl, José I. Burgos Gil, Masanobu Kaneko, Dominique Manchon, Nils Matthes, Martin Möller, Koji Tasaka, Don Zagier, Jianqiang Zhao and Wadim Zudilin. Finally I would like to thank the referee for various helpful comments and remarks.

References

1. 1.
Andrews, G., Rose, S.: MacMahon’s sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms. J. Reine Angew. Math. 676, 97–103 (2013)
2. 2.
Bachmann, H.: Multiple Zeta-Werte und die Verbindung zu Modulformen durch multiple Eisensteinreihen. Master thesis, Hamburg University (2012). http://www.henrikbachmann.com
3. 3.
Bachmann, H.: The algebra of bi-brackets and regularized multiple Eisenstein series. J. Number Theory 200, 260–294 (2019)
4. 4.
Bachmann, H.: Multiple Eisenstein series and  $$q$$-analogues of multiple zeta values. Thesis, Hamburg University (2015). http://www.henrikbachmann.com
5. 5.
Bachmann, H.: Double shuffle relations for q-analogues of multiple zeta values, their derivatives and the connection to multiple Eisenstein series. RIMS Kôyûroku 2017, 22–43 (2015)Google Scholar
6. 6.
Bachmann, H., Kühn, U.: The algebra of generating functions for multiple divisor sums and applications to multiple zeta values. Ramanujan J. 40(3), 605–648 (2016)
7. 7.
Bachmann, H., Kühn, U.: A short note on a conjecture of Okounkov about a  $$q$$-analogue of multiple zeta values. arXiv:1309.3920 [math.NT]
8. 8.
Bachmann, H., Kühn, U.: A dimension conjecture for  $$q$$-analogues of multiple zeta values. In This VolumeGoogle Scholar
9. 9.
Bachmann, H., Tasaka, K.: The double shuffle relations for multiple Eisenstein series. Nagoya Math. J. 230, 1–33 (2017)
10. 10.
Bachmann, H., Tsumura, H.: Multiple series of Eisenstein type. Ramanujan J. 42(2), 479–489 (2017)
11. 11.
Borwein, J., Bradley, D.: Thirty-two Goldbach variations. Int. J. Number Theory 02, 65–103 (2006)
12. 12.
Bouillot, O.: The algebra of multitangent functions. J. Algebra 410, 148–238 (2014)
13. 13.
Bouillot, O.: Table of reduction of multitangent functions of weight up to 10 (2012). http://www-igm.univ-mlv.fr/~bouillot/Tables_de_multitangentes.pdf
14. 14.
Bradley, D.M.: Multiple q-zeta values. J. Algebra 283, 752–798 (2005)
15. 15.
Broadhurst, D., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)
16. 16.
Ecalle, J.: The flexion structure and dimorphy: flexion units, singulators, generators, and the enumeration of multizeta irreducibles. In: Asymptotics in Dynamics, Geometry and PDEs, Generalized Borel Summation, vol. II, pp. 27–211 (2011)Google Scholar
17. 17.
Ebrahimi-Fard, K., Manchon, D., Singer, J.: Duality and (q-)multiple zeta values. Adv. Math. 298, 254–285 (2016)
18. 18.
Ebrahimi-Fard, K., Manchon, D., Medina, J.C.: Unfolding the double shuffle structure of q-multiple zeta values. Bull. Austral. Math. Soc. 91(3), 368–388 (2015)
19. 19.
Gangl, H., Kaneko, M., Zagier, D.: Double zeta values and modular forms. Automorphic Forms and Zeta Functions, pp. 71–106. World Science Publisher, Hackensack, NJ (2006)
20. 20.
Goncharov, A.B.: Galois symmetries of fundamental groupoids and noncommutative geometry. Duke Math. J. 128(2), 209–284 (2005)
21. 21.
Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11(1), 49–68 (2000)
22. 22.
Hoffman, M.E., Ihara, K.: Quasi-shuffle products revisited. J. Algebra 481, 293–326 (2017)
23. 23.
Ihara, K.: Derivation and double shuffle relations for multiple zeta values, joint work with M. Kaneko, D. Zagier. RIMS Kôyûroku 1549, 47–63Google Scholar
24. 24.
Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142, 307–338 (2006)
25. 25.
Ihara, K., Ochiai, H.: Symmetry on linear relations for multiple zeta values. Nagoya Math. J. 189, 49–62 (2008)
26. 26.
Kaneko, M., Tasaka, K.: Double zeta values, double Eisenstein series, and modular forms of level 2. Math. Ann. 357(3), 1091–1118 (2013)
27. 27.
Okounkov, A.: Hilbert schemes and multiple $$q$$-zeta values. Funct. Anal. Appl. 48, 138–144 (2014)
28. 28.
Ohno, Y., Okuda, J., Zudilin, W.: Cyclic $$q$$-MZSV sum. J. Number Theory 132(1), 144–155 (2012)
29. 29.
Qin, Z., Yu, F.: On Okounkov’s conjecture connecting Hilbert schemes of points and multiple q-zeta values. Int. Math. Res. Not. 2, 321–361 (2018)Google Scholar
30. 30.
Rose, S.: Quasi-modularity of generalized sum-of-divisors functions. Res. Number Theory 1, Art. 18, 11 pp (2015)Google Scholar
31. 31.
Schlesinger, K.-G.: Some remarks on q-deformed multiple polylogarithms. arXiv:math/0111022 [math.QA]
32. 32.
Singer, J.: On q-analogues of multiple zeta values. Funct. Approx. Comment. Math. 53(1), 135–165 (2015)
33. 33.
Takeyama, Y.: The algebra of a q-analogue of multiple harmonic series. SIGMA Symmetry Integrability Geom. Methods Appl. 9, Paper 061 (2013)Google Scholar
34. 34.
Yuan, H., Zhao, J.: Double shuffle relations of double zeta values and double Eisenstein series of level N. J. Lond. Math. Soc. (2) 92(3), 520–546 (2015)Google Scholar
35. 35.
Yuan, H., Zhao, J.: Multiple Divisor Functions and Multiple Zeta Values at Level N. arXiv:1408.4983 [math.NT]
36. 36.
Zagier, D.: Elliptic modular forms and their applications. The 1-2-3 of Modular Forms, pp. 1–103. Universitext Springer, Berlin (2008)Google Scholar
37. 37.
Zagier, D.: Periods of modular forms, traces of Hecke operators, and multiple zeta values. RIMS Kôyûroku 843, 162–170 (1993)
38. 38.
Zhao, J.: Multiple q-zeta functions and multiple q-polylogarithms. Ramanujan J. 14(2), 189–221 (2007)
39. 39.
Zhao, J.: Uniform approach to double shuffle and duality relations of various q-analogs of multiple zeta values via Rota-Baxter algebras. arXiv:1412.8044 [math.NT]
40. 40.
Zorich, A.: Flat surfaces. Frontiers in Number Theory, Physics, and Geometry, vol. I, Springer (2006)Google Scholar
41. 41.
Zudilin, W.: Multiple  $$q$$-zeta brackets. Math. 3:1, Spec. Issue Math. Phys. 119–130 (2015)Google Scholar
42. 42.
Zudilin, W.: Algebraic relations for multiple zeta values, (Russian. Russian summary) Uspekhi Mat. Nauk 58 (2003)Google Scholar