Skip to main content

Biomechanics of Intramedullary Nails Relative to Fracture Fixation and Deformity Correction

  • Chapter
  • First Online:
Essential Biomechanics for Orthopedic Trauma

Abstract

Modern intramedullary nailing began in the World War II era with Gerhard Küntscher’s intramedullary implants. Multiple design advances have followed, and medullary nailing has become the workhorse in the armamentarium of the orthopedic trauma surgeon for long bone fracture and deformity care. Current nail design features that have an effect on nail biomechanics include the following: material (metal) properties, cross-sectional shape, diameter, curvature of the nail, and the ability to place interlocking devices (such as bolts). Extrinsic factors, such as reaming of the medullary canal, inherent fracture stability (fracture pattern, including comminution or spiral configuration), and the use of adjuncts for stability (such as blocking or “poller” screws), also affect biomechanics of fracture fixation. This chapter will describe biomechanics of intramedullary nailing, with illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Küntscher G. The intramedullary nailing of fractures. Clin Orthop Relat Res. 1968;60:5–11.

    Google Scholar 

  2. University of Washington. Young’s modulus. https://depts.washington.edu/matseed/mse_resources/Webpage/Biomaterials/young%27s_modulus.htm. Accessed 13 Oct 2019.

  3. AZO Materials. Stainless Steel – Grade 316L – Properties, Fabrication and Applications (UNS S31603). 18 Feb 2004. Sydney, Australia. https://www.azom.com/article.aspx?ArticleID=2382. Accessed 13 Oct 2019.

  4. Cuppone M, Seedhom BB, Berry E, Ostell AE. The longitudinal Young’s modulus of cortical bone in the midshaft of human femur and its correlation with CT scanning data. Calcif Tissue Int. 2004;74(3):302–9.

    Article  CAS  Google Scholar 

  5. AZO Materials. U.S.Titanium Industry Inc. Titanium Alloys – Ti6Al4V Grade 5. 30 Jul 2002. https://www.azom.com/properties.aspx?ArticleID=1547. Accessed 13 Oct 2019.

  6. Kempf I, Grosse A, Beck G. Closed locked intramedullary nailing. Its application to comminuted fractures of the femur. J Bone Joint Surg Am. 1985;67(5):709–20.

    Article  CAS  Google Scholar 

  7. Eichinger JK, Balog TP, Grassbaugh JA. Intramedullary fixation of clavicle fractures: anatomy, indications, advantages, and disadvantages. J Am Acad Orthop Surg. 2016;24(7):455–64.

    Article  Google Scholar 

  8. Zhao L, Wang B, Bai X, Liu Z, Gao H, Li Y. Plate fixation versus intramedullary nailing for both-bone forearm fractures: a meta-analysis of randomized controlled trials and cohort studies. World J Surg. 2017;41(3):722–33.

    Article  Google Scholar 

  9. Pace JL. Pediatric and adolescent forearm fractures: current controversies and treatment recommendations. J Am Acad Orthop Surg. 2016;24(11):780–8.

    Article  Google Scholar 

  10. Bernstein M, Fragomen A, Rozbruch SR. Tibial bone transport over an intramedullary nail using cable and pulleys. JBJS Essent Surg Tech. 2018;8(1):e9.

    Article  Google Scholar 

  11. Markolf KL, Cheung E, Joshi NB, Boguszewski DV, Petrigliano FA, McAllister DR. Plate versus intramedullary nail fixation of anterior tibial stress fractures: a biomechanical study. Am J Sports Med. 2016;44(6):590–6.

    Article  Google Scholar 

  12. Märdian S, Schaser KD, Duda GN, Heyland M. Working length of locking plates determines interfragmentary movement in distal femur fractures under physiological loading. Clin Biomech (Bristol, Avon). 2015;30(4):391–6.

    Article  Google Scholar 

  13. Ma JX, Wang J, Xu WG, Yu JT, Yang Y, Ma XL. Biomechanical outcome of proximal femoral nail antirotation is superior to proximal femoral locking compression plate for reverse oblique intertrochanteric fractures: a biomechanical study of intertrochanteric fractures. Acta Orthop Traumatol Turc. 2015;49(4):426–32.

    PubMed  Google Scholar 

  14. Augat P, Rapp S, Claes L. A modified hip screw incorporating injected cement for the fixation of osteoporotic trochanteric fractures. J Orthop Trauma. 2002;16(5):311–6.

    Article  Google Scholar 

  15. Ito K, Hungerbühler R, Wahl D, Grass R. Improved intramedullary nail interlocking in osteoporotic bone. J Orthop Trauma. 2001;15(3):192–6.

    Article  CAS  Google Scholar 

  16. Tencer AF, Sherman MC, Johnson KD. Biomechanical factors affecting fracture stability and femoral bursting in closed intramedullary rod fixation of femur fractures. J Biomech Eng. 1985;107(2):104–11.

    Article  CAS  Google Scholar 

  17. Egol KA, Chang EY, Cvitkovic J, Kummer FJ, Koval KJ. Mismatch of current intramedullary nails with the anterior bow of the femur. J Orthop Trauma. 2004;18(7):410–5.

    Article  Google Scholar 

  18. Bazylewicz DB, Egol KA, Koval KJ. Cortical encroachment after cephalomedullary nailing of the proximal femur: evaluation of a more anatomic radius of curvature. J Orthop Trauma. 2013;27(6):303–7.

    Article  Google Scholar 

  19. Roberts JW, Libet LA, Wolinsky PR. Who is in danger? Impingement and penetration of the anterior cortex of the distal femur during intramedullary nailing of proximal femur fractures: preoperatively measurable risk factors. J Trauma Acute Care Surg. 2012;73(1):249–54.

    Article  Google Scholar 

  20. Collinge CA, Beltran CP. Does modern nail geometry affect positioning in the distal femur of elderly patients with hip fractures? A comparison of otherwise identical intramedullary nails with a 200 versus 150 cm radius of curvature. J Orthop Trauma. 2013;27(6):299–302.

    Article  Google Scholar 

  21. Strauss E, Frank J, Lee J, Kummer FJ, Tejwani N. Helical blade versus sliding hip screw for treatment of unstable intertrochanteric hip fractures: a biomechanical evaluation. Injury. 2006;37(10):984–9.

    Article  Google Scholar 

  22. Tejwani N, Polonet D, Wolinsky PR. Controversies in the intramedullary nailing of proximal and distal tibia fractures. J Am Acad Orthop Surg. 2014;22(10):665–73.

    Article  Google Scholar 

  23. Mehling I, Hoehle P, Sternstein W, Blum J, Rommens PM. Nailing versus plating for comminuted fractures of the distal femur: a comparative biomechanical in vitro study of three implants. Eur J Trauma Emerg Surg. 2013;39(2):139–46.

    Article  CAS  Google Scholar 

  24. Freeman AL, Craig MR, Schmidt AH. Biomechanical comparison of tibial nail stability in a proximal third fracture: do screw quantity and locked, interlocking screws make a difference? J Orthop Trauma. 2011;25(6):333–9.

    Article  Google Scholar 

  25. Höntzsch D, Schaser KD, Hofmann GO, Pohlemann T, Hem ES, Rothenbach E, et al. Evaluation of the effectiveness of the angular stable locking system in patients with distal tibial fractures treated with intramedullary nailing: a multicenter randomized controlled trial. J Bone Joint Surg Am. 2014;96(22):1889–97.

    Article  Google Scholar 

  26. Krettek C, Miclau T, Schandelmaier P, Stephan C, Möhlmann U, Tscherne H. The mechanical effect of blocking screws ("Poller screws") in stabilizing tibia fractures with short proximal or distal fragments after insertion of small-diameter intramedullary nails. J Orthop Trauma. 1999;13(8):550–3.

    Article  CAS  Google Scholar 

  27. Krettek C, Stephan C, Schandelmaier P, Richter M, Pape HC, Miclau T. The use of Poller screws as blocking screws in stabilising tibial fractures treated with small diameter intramedullary nails. J Bone Joint Surg Br. 1999;81(6):963–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Della Rocca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woods, J.C., Della Rocca, G.J. (2020). Biomechanics of Intramedullary Nails Relative to Fracture Fixation and Deformity Correction. In: Crist, B., Borrelli Jr., J., Harvey, E. (eds) Essential Biomechanics for Orthopedic Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-36990-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36990-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36989-7

  • Online ISBN: 978-3-030-36990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics