Skip to main content

Locked Plating

  • Chapter
  • First Online:
Essential Biomechanics for Orthopedic Trauma
  • 1178 Accesses

Abstract

Achieving stable fracture fixation can be difficult when fractures include short articular segments or poor bone quality as seen in osteoporosis. Locking plate technology increased the ability to achieve and maintain fracture fixation by relying on screw plate interface rather than friction between the plate and bone generated by conventional non-locking screws. Locking systems including first-generation uniaxial locking screws, polyaxially locking screws, and locking screws that allow for axial motion affect the fracture construct’s biomechanical properties, including yield strength and stiffness, which in turn can promote or suppress bone healing. Finding the balance between fracture fixation strong enough to resist physiological loading but not overly stiff that inhibits bone healing remains challenging even for the most experienced surgeons. This chapter reviews the biomechanics of locked plating—its risks, benefits, and failures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Egol KA, Kubiak EN, Fulkerson E, Kummer FJ, Koval KJ. Biomechanics of locked plates and screws. J Orthop Trauma. 2004;18(8):488–93.

    Article  Google Scholar 

  2. Perren SM, Matter P. Evolution of AO philosophy. Acta Chir Orthop Traumatol Cechoslov. 2003;70(4):205–6.

    Google Scholar 

  3. Perren SM. Backgrounds of the technology of internal fixators. Injury. 2003;34(Suppl 2):B1–3.

    Article  Google Scholar 

  4. Perren SM, Matter P, Ruedi R, Allgower M. Biomechanics of fracture healing after internal fixation. Surg Annu. 1975;7:361–90.

    CAS  PubMed  Google Scholar 

  5. Haas N, Hauke C, Schutz M, Kaab M, Perren SM. Treatment of diaphyseal fractures of the forearm using the Point Contact Fixator (PC-Fix): results of 387 fractures of a prospective multicentric study (PC-Fix II). Injury. 2001;32(Suppl 2):B51–62.

    Article  Google Scholar 

  6. Tepic S, Remiger AR, Morikawa K, Predieri M, Perren SM. Strength recovery in fractured sheep tibia treated with a plate or an internal fixator: an experimental study with a two-year follow-up. J Orthop Trauma. 1997;11(1):14–23.

    Article  CAS  Google Scholar 

  7. Beltran MJ, Collinge CA, Gardner MJ. Stress modulation of fracture fixation implants. J Am Acad Orthop Surg. 2016;24(10):711–9.

    Article  Google Scholar 

  8. Gautier E, Sommer C. Guidelines for the clinical application of the LCP. Injury. 2003;34(Suppl 2):B63–76.

    Article  Google Scholar 

  9. Stoffel K, Dieter U, Stachowiak G, Gachter A, Kuster MS. Biomechanical testing of the LCP–how can stability in locked internal fixators be controlled? Injury. 2003;34(Suppl 2):B11–9.

    Article  Google Scholar 

  10. Lujan TJ, Henderson CE, Madey SM, Fitzpatrick DC, Marsh JL, Bottlang M. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation. J Orthop Trauma. 2010;24(3):156–62.

    Article  Google Scholar 

  11. Ahmad M, Nanda R, Bajwa AS, Candal-Couto J, Green S, Hui AC. Biomechanical testing of the locking compression plate: when does the distance between bone and implant significantly reduce construct stability? Injury. 2007;38(3):358–64.

    Article  CAS  Google Scholar 

  12. Doornink J, Fitzpatrick DC, Boldhaus S, Madey SM, Bottlang M. Effects of hybrid plating with locked and nonlocked screws on the strength of locked plating constructs in the osteoporotic diaphysis. J Trauma. 2010;69(2):411–7.

    Article  Google Scholar 

  13. Gardner MJ, Griffith MH, Demetrakopoulos D, Brophy RH, Grose A, Helfet DL, et al. Hybrid locked plating of osteoporotic fractures of the humerus. J Bone Joint Surg Am. 2006;88(9):1962–7.

    PubMed  Google Scholar 

  14. Pater TJ, Grindel SI, Schmeling GJ, Wang M. Stability of unicortical locked fixation versus bicortical non-locked fixation for forearm fractures. Bone Res. 2014;2:14014.

    Article  CAS  Google Scholar 

  15. Sommer C, Babst R, Muller M, Hanson B. Locking compression plate loosening and plate breakage: a report of four cases. J Orthop Trauma. 2004;18(8):571–7.

    Article  CAS  Google Scholar 

  16. Fitzpatrick DC, Doornink J, Madey SM, Bottlang M. Relative stability of conventional and locked plating fixation in a model of the osteoporotic femoral diaphysis. Clin Biomech (Bristol, Avon). 2009;24(2):203–9.

    Article  Google Scholar 

  17. Hebert-Davies J, Laflamme GY, Rouleau D, Canet F, Sandman E, Li A, et al. A biomechanical study comparing polyaxial locking screw mechanisms. Injury. 2013;44(10):1358–62.

    Article  Google Scholar 

  18. Bottlang M, Doornink J, Byrd GD, Fitzpatrick DC, Madey SM. A nonlocking end screw can decrease fracture risk caused by locked plating in the osteoporotic diaphysis. J Bone Joint Surg Am. 2009;91(3):620–7.

    Article  Google Scholar 

  19. Dougherty PJ, Kim DG, Meisterling S, Wybo C, Yeni Y. Biomechanical comparison of bicortical versus unicortical screw placement of proximal tibia locking plates: a cadaveric model. J Orthop Trauma. 2008;22(6):399–403.

    Article  Google Scholar 

  20. Barei DP, O’Mara TJ, Taitsman LA, Dunbar RP, Nork SE. Frequency and fracture morphology of the posteromedial fragment in bicondylar tibial plateau fracture patterns. J Orthop Trauma. 2008;22(3):176–82.

    Article  Google Scholar 

  21. Yoo BJ, Beingessner DM, Barei DP. Stabilization of the posteromedial fragment in bicondylar tibial plateau fractures: a mechanical comparison of locking and nonlocking single and dual plating methods. J Trauma. 2010;69(1):148–55.

    Article  Google Scholar 

  22. Lenz M, Wahl D, Gueorguiev B, Jupiter JB, Perren SM. Concept of variable angle locking–evolution and mechanical evaluation of a recent technology. J Orthop Res. 2015;33(7):988–92.

    Article  CAS  Google Scholar 

  23. Kaab MJ, Frenk A, Schmeling A, Schaser K, Schutz M, Haas NP. Locked internal fixator: sensitivity of screw/plate stability to the correct insertion angle of the screw. J Orthop Trauma. 2004;18(8):483–7.

    Article  CAS  Google Scholar 

  24. Schneider K, Oh JK, Zderic I, Stoffel K, Richards RG, Wolf S, et al. What is the underlying mechanism for the failure mode observed in the proximal femoral locking compression plate? A biomechanical study. Injury. 2015;46(8):1483–90.

    Article  Google Scholar 

  25. Gueorguiev B, Lenz M. Why and how do locking plates fail? Injury. 2018;49(Suppl 1):S56–60.

    Article  Google Scholar 

  26. Schoch B, Hast MW, Mehta S, Namdari S. Not all polyaxial locking screw technologies are created equal: a systematic review of the literature. JBJS Rev. 2018;6(1):e6.

    Article  Google Scholar 

  27. Lenz M, Wahl D, Zderic I, Gueorguiev B, Jupiter JB, Perren SM. Head-locking durability of fixed and variable angle locking screws under repetitive loading. J Orthop Res. 2016;34(6):949–52.

    Article  CAS  Google Scholar 

  28. Tidwell JE, Roush EP, Ondeck CL, Kunselman AR, Reid JS, Lewis GS. The biomechanical cost of variable angle locking screws. Injury. 2016;47(8):1624–30.

    Article  Google Scholar 

  29. Tank JC, Schneider PS, Davis E, Galpin M, Prasarn ML, Choo AM, et al. Early mechanical failures of the synthes variable angle locking distal femur plate. J Orthop Trauma. 2016;30(1):e7–e11.

    Article  Google Scholar 

  30. Otto RJ, Moed BR, Bledsoe JG. Biomechanical comparison of polyaxial-type locking plates and a fixed-angle locking plate for internal fixation of distal femur fractures. J Orthop Trauma. 2009;23(9):645–52.

    Article  Google Scholar 

  31. Button G, Wolinsky P, Hak D. Failure of less invasive stabilization system plates in the distal femur: a report of four cases. J Orthop Trauma. 2004;18(8):565–70.

    Article  Google Scholar 

  32. Cole PA, Zlowodzki M, Kregor PJ. Treatment of proximal tibia fractures using the less invasive stabilization system: surgical experience and early clinical results in 77 fractures. J Orthop Trauma. 2004;18(8):528–35.

    Article  Google Scholar 

  33. Weight M, Collinge C. Early results of the less invasive stabilization system for mechanically unstable fractures of the distal femur (AO/OTA types A2, A3, C2, and C3). J Orthop Trauma. 2004;18(8):503–8.

    Article  Google Scholar 

  34. Bottlang M, Doornink J, Fitzpatrick DC, Madey SM. Far cortical locking can reduce stiffness of locked plating constructs while retaining construct strength. J Bone Joint Surg Am. 2009;91(8):1985–94.

    Article  Google Scholar 

  35. Richter H, Plecko M, Andermatt D, Frigg R, Kronen PW, Klein K, et al. Dynamization at the near cortex in locking plate osteosynthesis by means of dynamic locking screws: an experimental study of transverse tibial osteotomies in sheep. J Bone Joint Surg Am. 2015;97(3):208–15.

    Article  Google Scholar 

  36. Bottlang M, Lesser M, Koerber J, Doornink J, von Rechenberg B, Augat P, et al. Far cortical locking can improve healing of fractures stabilized with locking plates. J Bone Joint Surg Am. 2010;92(7):1652–60.

    Article  Google Scholar 

  37. Bottlang M, Feist F. Biomechanics of far cortical locking. J Orthop Trauma. 2011;25(Suppl 1):S21–8.

    Article  Google Scholar 

  38. Dobele S, Horn C, Eichhorn S, Buchholtz A, Lenich A, Burgkart R, et al. The dynamic locking screw (DLS) can increase interfragmentary motion on the near cortex of locked plating constructs by reducing the axial stiffness. Langenbeck’s Arch Surg. 2010;395(4):421–8.

    Article  Google Scholar 

  39. U.S. Food and Drug Administration. FDA Home. Medical Devices. Databases. Class 2 Device Recall Synthes 3.7 and 5.0mm Dynamic Locking Screwn (DLS). https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfres/res.cfm?id=122920. Accessed 4 Jul 2019.

  40. Bottlang M, Tsai S, Bliven EK, von Rechenberg B, Klein K, Augat P, et al. Dynamic stabilization with active locking plates delivers faster, stronger, and more symmetric fracture-healing. J Bone Joint Surg Am. 2016;98(6):466–74.

    Article  Google Scholar 

  41. Henschel J, Tsai S, Fitzpatrick DC, Marsh JL, Madey SM, Bottlang M. Comparison of 4 Methods for dynamization of locking plates: differences in the amount and type of fracture motion. J Orthop Trauma. 2017;31(10):531–7.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lowe, J.A. (2020). Locked Plating. In: Crist, B., Borrelli Jr., J., Harvey, E. (eds) Essential Biomechanics for Orthopedic Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-36990-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36990-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36989-7

  • Online ISBN: 978-3-030-36990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics