Skip to main content

Biomechanical Principles of Fracture Healing

  • Chapter
  • First Online:
Essential Biomechanics for Orthopedic Trauma

Abstract

Osteogenic tissues are remarkably mechanosensitive during both growth and repair. Thus, it is important for a surgeon aiming to optimize bone regeneration to create an ideal mechanical environment with the surgical protocol, implants, and postsurgical weight-bearing they select. Here, we discuss the basics of mechanical strength from both the material and structural perspectives for fracture callus tissues and implant materials. After reviewing this chapter, the reader should be able to find characteristic points on a stress-strain curve and to categorize material properties (i.e., stiff vs. compliant, strong vs. weak, ductile vs. brittle). The following topics are also covered: anisotropy, fatigue failure, viscoelasticity, and stress concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McBride SH, Silva MJ. Adaptive and injury response of bone to mechanical loading. Bonekey Osteovision. 2012;1:pii: 192.

    Google Scholar 

  2. Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe UR. Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol. 2008;40(12):2720–38.

    Article  CAS  Google Scholar 

  3. Chen J-H, Liu C, You L, Simmons CA. Boning up on Wolff’s Law: mechanical regulation of the cells that make and maintain bone. J Biomech. 2010;43(1):108–18.

    Article  Google Scholar 

  4. Glatt V, Evans CH, Tetsworth K. A concert between biology and biomechanics: the influence of the mechanical environment on bone healing. Front Physiol. 2017;7:678. https://doi.org/10.3389/fphys.2016.00678.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morgan EF, Gleason RE, Hayward LN, Leong PL, Palomares KTS. Mechanotransduction and fracture repair. J Bone Joint Surg Am. 2008;90(Suppl 1):25–30. Review.

    Article  Google Scholar 

  6. Morgan EF, Lei J. Toward clinical application and molecular understanding of the mechanobiology of bone healing. Clin Rev Bone Miner Metab. 2015;13(4):256–65.

    Article  CAS  Google Scholar 

  7. Cole JH, van der Meulen MCH. Whole bone mechanics and bone quality. Clin Orthop Relat Res. 2011;469(8):2139–49.

    Article  Google Scholar 

  8. Keaveny TM, Morgan EF, Yeh OC. Bone mechanics. In: Kutz M, editor. Standard handbook of biomedical engineering and design. New York: McGraw Hill Professional; 2003. Access Engineering. https://www.accessengineeringlibrary.com/content/book/9780071498388.

    Google Scholar 

  9. Karim L, Hussein AI, Morgan EF, Bouxsein ML. The mechanical behavior of bone. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis. 4th ed. San Diego: Academic; 2013. p. 431–52.

    Chapter  Google Scholar 

  10. Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Vet J. 2008;177(1):8–17.

    Article  Google Scholar 

  11. Morgan EF, Unnikrisnan GU, Hussein AI. Bone mechanical properties in healthy and diseased states. Annu Rev Biomed Eng. 2018;20(1):119–43.

    Article  CAS  Google Scholar 

  12. Jepsen KJ, Silva MJ, Vashishth D, Guo XE, van der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res. 2015;30(6):951–66.

    Article  Google Scholar 

  13. Avallone EA, Baumeister T III, editors. Marks’ standard handbook for mechanical engineers. 10th ed. New York: McGraw-Hill; 1996.

    Google Scholar 

  14. Roylance D. Stress-strain curves [internet]. MIT OpenCourseWare. http://ocw.mit.edu. Cambridge, MA: Massachusetts Institute of Technology; 2001. Available from: http://web.mit.edu/course/3/3.11/www/modules/ss.pdf. Accessed 18 Sept 2018.

  15. Manjubala I, Liu Y, Epari DR, Roschger P, Schell H, Fratzl P, et al. Spatial and temporal variations of mechanical properties and mineral content of the external callus during bone healing. Bone. 2009;45(2):185–92.

    Article  CAS  Google Scholar 

  16. Leong PL, Morgan EF. Measurement of fracture callus material properties via nanoindentation. Acta Biomater. 2008;4(5):1569–75.

    Article  CAS  Google Scholar 

  17. Leong PL, Morgan EF. Correlations between indentation modulus and mineral density in bone-fracture calluses. Integr Comp Biol. 2009;49(1):59–68.

    Article  Google Scholar 

  18. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.

    Article  CAS  Google Scholar 

  19. Garnero P. The contribution of collagen crosslinks to bone strength. Bonekey Rep. 2012;1:182. https://doi.org/10.1038/bonekey.2012.182.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bartel DL, Davy DT, Keaveny TM. Orthopaedic mechanics and design in musculoskeletal systems. Pearson/Prentice Hall: Upper Saddle River; 2006.

    Google Scholar 

  21. Currey J. The many adaptations of bone. J Biomech. 2003;36(10):1487–95.

    Article  CAS  Google Scholar 

  22. Thomopoulos S, Marquez JP, Weinberger B, Birman V, Genin GM. Collagen fiber orientation at the tendon to bone insertion and its influence on stress concentrations. J Biomech. 2006;39(10):1842–51.

    Article  Google Scholar 

  23. Mfoumou E, Tripette J, Blostein M, Cloutier G. Time-dependent hardening of blood clots quantitatively measured in vivo with shear-wave ultrasound imaging in a rabbit model of venous thrombosis. Thromb Res. 2014;133(2):265–71.

    Article  CAS  Google Scholar 

  24. Weisel JW. The mechanical properties of fibrin for basic scientists and clinicians. Biophys Chem. 2004;112(2–3):267–76.

    Article  CAS  Google Scholar 

  25. Silva MJ, Brodt MD, Wopenka B, Thomopoulos S, Williams D, Wassen MHM, et al. Decreased collagen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res. 2006;21(1):78–88.

    Article  Google Scholar 

  26. García-Rodríguez J, Martínez-Reina J. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation. Biomech Model Mechanobiol. 2017;16(1):159–72.

    Article  Google Scholar 

  27. Herman BC, Cardoso L, Majeska RJ, Jepsen KJ, Schaffler MB. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone. 2010;47(4):766–72.

    Article  CAS  Google Scholar 

  28. Colopy SA, Benz-Dean J, Barrett JG, Sample SJ, Lu Y, Danova NA, et al. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Bone. 2004;35(4):881–91.

    Article  CAS  Google Scholar 

  29. Özkaya N, Leger D, Goldsheyder D, Nordin M. Mechanical properties of biological tissues. In: Fundamentals of biomechanics: equilibrium, motion, and deformation. 4th ed. Cham: Springer International; 2016. p. 361–83.

    Google Scholar 

  30. White AA, Panjabi MM, Southwick WO. The four biomechanical stages of fracture repair. J Bone Joint Surg Am. 1977;59(2):188–92.

    Article  Google Scholar 

  31. Silva MJ, Touhey DC. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life. J Orthop Res. 2007;25(2):252–61.

    Article  Google Scholar 

  32. Currey JD. Stress concentrations in bone. J Cell Sci. 1962;s3–103(61):111–33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah H. McBride-Gagyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

McBride-Gagyi, S.H., Lynch, M.E. (2020). Biomechanical Principles of Fracture Healing. In: Crist, B., Borrelli Jr., J., Harvey, E. (eds) Essential Biomechanics for Orthopedic Trauma. Springer, Cham. https://doi.org/10.1007/978-3-030-36990-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36990-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36989-7

  • Online ISBN: 978-3-030-36990-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics