Skip to main content

Climate Change: Impact on Health and Infectious Diseases Globally

  • Chapter
  • First Online:
Current Trends and Concerns in Infectious Diseases

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

Abstract

There is a growing concern of the effect of climate change with rising global temperature on the well-being and health of populations across the world. Cumulative scientific data for more than 50 years indicate that global warming is from the greenhouse effect of rising carbon dioxide [CO2] in the atmosphere, predominantly attributed to human activities. This effect results not only in an increase in ambient temperature, but produces major climatic perturbations such as land erosions from rising sea levels due to melting of the Arctic and Antarctic ice/glaciers, droughts, increase severity of hurricanes and cyclones, and floods in some areas. These adverse consequences will have detrimental effects [already occurring] on most countries globally, but greater on low-middle income nations, with negative impacts on economies and development, agriculture and food supply, rising rates of poverty and malnutrition, mass migration and displacement of peoples due to economic hardship and conflicts, education of children in poor nations, and the health and welfare of many millions of people worldwide. This chapter discusses the scientific basis of climate change, direct and indirect effects on human well-being and health, including a predictable increase of certain infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous. History of climate change science. Wikipedia. https://en.wikipedia.org/wiki/history-of-climatechange-science

  2. Sawyer JS (1972) Man-made carbon dioxide and the “greenhouse effect”. Nature 239:23–26

    Article  CAS  Google Scholar 

  3. WMO (World Meteorological Organization) (1989) The changing atmosphere: implications for global security, Toronto, Canada, 27–30 June 1988: Conference Proceedings. Secretariat of the World Meteorological Organization, Geneva. http://www.cmos.ca/ChangingAtmosphere1988e.pdf (PDF)

  4. Barnosky AD, Kraatz BP (2007) The role of climate change in the evolution of mammals. BioScience 57:523–532

    Article  Google Scholar 

  5. Kang Y, Khan S, Ma X (2009) Climate change impacts on crop yield, crop water productivity and food security—a review. Prog Nat Sci 19:1665–1674

    Article  Google Scholar 

  6. Lindgren E, andersson Y, Suk JE, Sudre B, Semenza JC (2012) Monitoring EU emerging infectious disease risk due to climate change. Science 336:418–419

    Article  CAS  PubMed  Google Scholar 

  7. Reuveny R (2007) Climate change-induced migration and violent conflict. Polit Geogr 26:656–673

    Article  Google Scholar 

  8. Smith KR, Woodward A, Campbell-Lendrum D et al (2014) Human health impacts, adaptation, and co-benefits. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects contribution of Working group II to the Fifth Assessment Panel of the Intergovernmental Panel of Climate Change. Cambridge University Press, Cambridge, pp 709–754

    Google Scholar 

  9. Watts N, Amann M, Ayeb-Karlsson S et al (2018) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630

    Article  PubMed  Google Scholar 

  10. Berry HL, Bowen K, Kjellstrom T (2010) Climate change and mental health: a causal pathways framework. Int J Public Health 55:123–132

    Article  PubMed  Google Scholar 

  11. Reimuth-Selzle K, Kampf CJ, Lucas K et al (2017) Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol 51:4119–4141

    Article  CAS  Google Scholar 

  12. Glaser J, Lemery J, Rajagopalan B et al (2016) Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy. Clin J Am Soc Nephrol 11:1472–1483

    Article  PubMed  PubMed Central  Google Scholar 

  13. Watts N, Neil Adger W, Agnolucci P et al (2015) Health and climate change: policy responses to protect public health. Lancet 386:1861–1914

    Article  PubMed  Google Scholar 

  14. Kishore N, Marques D, Mahmud A et al (2018) Mortality in Puerto Rico after Hurricane Maria. N Engl J Med 379:162–170

    Article  PubMed  Google Scholar 

  15. Asseng S, Ewert F, Martre P et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5:143–147

    Article  Google Scholar 

  16. Peng S, Huang J, Sheehy JE et al (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci U S A 101:9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baylis M (2017) Potential impact of climate change on emerging vector – borne and other infections in the UK. Environ Health 16(Suppl 1):112

    Article  PubMed  PubMed Central  Google Scholar 

  18. Roswati A (2017) Global warming and its health impact. Int J Occup Environ Med 8:7–20

    Article  Google Scholar 

  19. Schreiber W, Mathys FK (1987) Infectio. Infectious diseases in the history of medicine. Malaria. Hoffmann-La Roche & Co. Ltd., Basle, pp 213–223

    Google Scholar 

  20. Pan American Health Organization (1969) Report for registration of malaria eradication from the United States of America. Pan American Health Organization, Washington, DC

    Google Scholar 

  21. Vasilakis N, Weaver SC (2008) The history and evolution of human dengue emergence. Adv Virus Res 72:1–76

    Article  CAS  PubMed  Google Scholar 

  22. Sambri V, Capobianchi M, Charrel R et al (2013) West Nile virus in Europe: emergence, epidemiology, diagnosis, treatment and prevention. Clin Microbiol Infect 19:699–704

    Article  CAS  PubMed  Google Scholar 

  23. Grandadam M, caro V, Plumet S et al (2011) Chickungunya virus, southeastern France. Emerg Infect Dis 17:910–913

    Article  PubMed  PubMed Central  Google Scholar 

  24. Charrel RN, Gallian P, Nicholetti L, Papa A, Sanchez-Seco MP, Tenorio A, de Lamballerie X (2005) Emergence of Toscana virus in Europe. Nature 11:1–8

    Google Scholar 

  25. Weissenbock H, Kolodziejek J, Uri A, Lussy H, Rebel-Bauder B, Nowotny N (2002) Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg Infect Dis 8:652–656

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ewing DA, Cobbold CA, Purse BV, Nunn MA, White SM (2016) Modeling the effect of temperature on the seasonal population dynamics of temperate mosquitoes. J Theor Biol 400:65–79

    Article  CAS  PubMed  Google Scholar 

  27. Petersen LR, Roehrig JT, Sejvar J (2007) West Nile virus in the Americas. In: Fong IW, Alibek K (eds) New and evolving infections of the 21st century. Springer, New York, pp 3–56

    Chapter  Google Scholar 

  28. Vinogradova EB (2000) Culex pipiens mosquitoes: taxonomy, distribution, ecology physiology, genetics, applied importance and control, 2nd edn. Pensoft, Sofia

    Google Scholar 

  29. Paz S, Semenza JC (2013) Environmental drivers of West Nile fever epidemiology in Europe and Western Asia—a review. Int J Environ Res Public Health 10:3543–3562

    Article  PubMed  PubMed Central  Google Scholar 

  30. Semenza JC (2015) Prototype early warning systems for vector-borne diseases in Europe. Int J Environ Res Public Health 12:6333–6351

    Article  PubMed  PubMed Central  Google Scholar 

  31. Paz S, Semenza JC (2013) Environmental drivers of West Nile fever epidemic in Europe and Western Asia—a review. Int Environ Res Public Health 10:3543–3562

    Article  Google Scholar 

  32. Stanaway JD, Shepard DS, Undurraga EA et al (2016) The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 16:712–723

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hales S, de Wet N, Maindonald J, Woodward AQ (2002) Potential effect of population and climate change on global distribution of dengue fever: an empirical model. Lancet 360:830–834

    Article  PubMed  Google Scholar 

  34. World Health Organization (2015) Dengue and severe dengue. http://www.who.int/mediacentre/factsheets/fs117/en/

  35. Vos T, Abajobir AA, Abbafati C et al (2017) Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1211–1259

    Article  Google Scholar 

  36. Bouzid M, Codon-Gonzalez FJ, Lung T, Lake IR, Hunter PR (2014) Climate change and the emergence of vector-borne diseases in Europe: case study of dengue fever. BMC Public Health 14:781. https://doi.org/10.1186/1471-2458-14-781

    Article  PubMed  PubMed Central  Google Scholar 

  37. Colon-Gonzalez FJ, Fezzi C, Lake IR, Hunter PR (2013) The effects of weather and climate change on dengue. PLoS Negl Trop Dis 7:e2503

    Article  PubMed  PubMed Central  Google Scholar 

  38. Naish S, dale P, Mackenzie JS, McBride J, Mengersen K, Tong S (2014) Climate change and dengue: a critical and systematic review of quantitative modeling approaches. BMC Infect Dis 14:167

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu L, Stige LC, Chan KS et al (2017) Climate variation drives dengue dynamics. Proc Natl Acad Sci U S A 114:113–118

    Article  CAS  PubMed  Google Scholar 

  40. Mutheneni SR, Morse AP, Caminade C, Upadhyayula SM (2017) Dengue burden in India: recent trends and importance of climate parameters. Emergency 6:e70

    Google Scholar 

  41. European Centre for Disease Prevention and Control (ECDC) (2013) Dengue outbreak in Madeira, Portugal. Mission report. ECDC, Stockholm

    Google Scholar 

  42. Benedict MQ, Levine RS, Hawley WA et al (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic Dis 7:514–519

    Article  Google Scholar 

  43. Caminade C, Medlock JM, Ducheyne E et al (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

    Article  PubMed  PubMed Central  Google Scholar 

  44. Simenza JC, Suk JE (2018) Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett 365:fnx244

    Google Scholar 

  45. Hanson S, Craig GB (1994) Cold acclimatization, diapause, and geographic origin affect cold hardiness in eggs of Aedes albopictus [Diptera: Culicidae]. J Med Entomol 31:192–201

    Article  CAS  PubMed  Google Scholar 

  46. Rochlin I, Niniaggi DV, Hutchinson ML, Farajollahi A (2013) Climate change and range expansion of the Asian tiger mosquito [Aedes albopictus] in northeastern USA: implications for public health practitioners. PLoS One 8:e60874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ramos MM, Mohammmed H, Zielinski-Gutierrez E et al (2008) Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 78:364–369

    Article  PubMed  Google Scholar 

  48. Rossati A, Bargiacchi O, Kroumova V, Zaramella M, Caputo A, Garavelli PL (2016) Climate, environment and transmission of malaria. Infez Med 24:93–104

    PubMed  Google Scholar 

  49. Maldonato YA, Nahlen BL, Roberto RR et al (1990) Transmission of Plasmodium vivax malaria in San Diego county, California. Am J Trop Med Hyg 42:3–9

    Article  Google Scholar 

  50. Pamoana E (1963) A textbook of malaria eradication. Oxford University Press, London

    Google Scholar 

  51. Chirebvu E, Chimbari MJ, Ngwenya BN, Sartorius B (2016) Clinical malaria transmission trends and its association with climate variables in Tubu Village, Botswana: a retrospective analysis. PLoS One 11:e0139843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Bennett A, Yukich J, Miller JM et al (2016) The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia. Parasit Vectors 9:431

    Article  PubMed  PubMed Central  Google Scholar 

  53. Khormi HM, Kumar L (2016) Future malaria spatial pattern based on potential global warming impact in South and Southeast Asia. Geospat Health 11:416

    Article  PubMed  Google Scholar 

  54. Ren Z, Wang D, Ma A et al (2016) Predicting malarial vector distribution under climate change scenarios in China: challenges for malaria elimination. Sci Rep 16:20604

    Article  CAS  Google Scholar 

  55. Srimath-Tirumula-Peddinti RC, Neelapu NR, Sidagam N (2015) Association of climatic variability, vector population and malarial diseases in district of Visakhapatnam, India: a modeling and prediction analysis. PLoS One 10:e0128377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Siraj AS, Santos-Vega M, Bourma MJ, Yadeta D, Ruiz Carrascal D, Pascual M (2014) Altitudinal changes ion malaria incidence in highlands of Ethiopia and Colombia. Science 343:1154–1158

    Article  CAS  PubMed  Google Scholar 

  57. Flahault A, de Castaneda RR, Bolon I (2016) Climate change and infectious diseases. Public Health Rev 37:21

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ryan SJ, McNally A, Johnson LR et al (2015) Mapping physiological suitability limits for malaria in Africa under climate change. Vector Borne Zoonotic Dis 15:718–725

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peterson AT (2009) Shifting suitability for malaria vectors across Africa with warming climates. BMC Infect Dis 9:59

    Article  PubMed  PubMed Central  Google Scholar 

  60. Caminade C, McIntyre MK, Jones AE (2016) Climate change and vector-borne diseases: where are we next heading? J Infect Dis 214:1300–1301

    Article  PubMed  Google Scholar 

  61. Boyce R, Reyes R, Matte M et al (2016) Severe flooding and malaria transmission in the western Ugandan highlands: implications for disease control in the era of global climate change. J Infect Dis 214:1403–1410

    Article  PubMed  PubMed Central  Google Scholar 

  62. Rossati A (2017) Global warming and its impact. Int J Occup Environ Med 8:7–20

    Article  PubMed  Google Scholar 

  63. Zucker JR (1996) Changing patterns of autochthonous malaria transmission in the United States: a review of recent outbreaks. Emerg Infect Dis 2:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Slater H, Michael E (2012) Predicting the current and future potential distributions of lymphatic filariasis in Africa using maximum entropy ecological niche modeling. PLoS One 7:e32202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ogden NH, Lindsay LR (2016) Effects of climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol 32:646–656

    Article  PubMed  Google Scholar 

  66. Fong IW (2017) Emergence of new tickborne infections. In: Emerging zoonoses. A worldwide perspective. Springer, New York, pp 81–100

    Chapter  Google Scholar 

  67. Rosenberg R, Lindsey NP, Fischer M et al (2018) Vital signs: trends in reported vector-borne disease cases—United States and territories, 2004-2016. MMWR Mor Mortal Wkly Rep 67:496–501

    Article  Google Scholar 

  68. Eisen RJ, Eisen L, Ogden NH, Beard CB (2016) Linkages of weather and climate with Ixodes scapularis and I. pacificus [Acari: Ixodidae], enzootic transmission of Borrelia burgdorferi, and Lyme disease in North America. J Med Entomol 53:250–261

    Article  PubMed  Google Scholar 

  69. Paules CI, Marston HD, Bloom ME, Fauci AS (2018) Tickborne diseases---confronting a growing threat. N Engl J Med 379:701–703

    Article  PubMed  Google Scholar 

  70. Government of Canada. Canada’s surveillance of Lyme disease. https://www.canada.ca/en/public-health/services/disease/lyme-disease/surveillance-lyme. Accessed 27 Aug 2018

  71. Kaplan JE, Newhouse VF (1984) Occurrence of Rocky Mountain spotted fever in relation to climatic, geophysical, and ecological variables. Am J Trop Med Hyg 33:1281–1282

    Article  CAS  PubMed  Google Scholar 

  72. Parola P, Socolovschi C, Jeanjean L et al (2008) Warmer weather linked to tick attack and emergence of severe rickettsiosis. PLoS Negl Trop Dis 2:e338

    Article  PubMed  PubMed Central  Google Scholar 

  73. Nakazawa Y, Williams R, Peterson AT et al (2007) Climate changes on plague and tularemia in the United States. Vector Borne Zoonotic Dis 7:529–540

    Article  PubMed  Google Scholar 

  74. Estrada-Pena A, Ortega C, Sanchez N et al (2011) Correlation of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks with specific abiotic traits in Western Palearctic. Appl Environ Microbiol 77:3838–3845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Maltezou HC, Papa A (2010) Crimean-Congo hemorrhagic fever: risk for emergence of new endemic foci in Europe. Travel Med Infect Dis 8:139–143

    Article  PubMed  Google Scholar 

  76. Estrada-Pena A, Venzal JM (2007) Climate niches of tick species in the Mediterranean region: modeling of occurrence data, distribution constraints, and impact of climate change. J Med Entomol 44:1130–1138

    Article  PubMed  Google Scholar 

  77. Ansari H, Shahbaz B, Izadi S et al (2014) Crimean-Congo hemorrhagic fever and its relationship with climate factors in southeast Iran: a 13 year experience. J Infect Dev Ctries 8:749–757

    Article  PubMed  Google Scholar 

  78. Vescio MF, Piras MA, Ciccozzi M, MSF Study Group et al (2008) Socio-demographic and climate factors as correlates of Mediterranean spotted fever [MSF] in northern Sardinia. Am J Trop Med Hyg 78:318–320

    Article  PubMed  Google Scholar 

  79. Espejo Arenas E, Font Creus B, Bella Cueto F et al (1986) Climatic factors in resurgence of Mediterranean spotted fever. Lancet 1:1333

    Article  CAS  PubMed  Google Scholar 

  80. de Sousa R, Luz T, Parreira P et al (2006) Buotonneuse fever and climate variability. Ann N Y Acad Sci 1078:162–169

    Article  PubMed  Google Scholar 

  81. Raoult D, tissot Dupont H, Caraco P et al (1992) Mediterranean spotted fever in Marseille: descriptive epidemiology and the influence of climate factors. Eur J Epidemiol 8:192–197

    Article  CAS  PubMed  Google Scholar 

  82. Negrev M, Paz S, Clermont A et al (2015) Impacts of climate change on vector borne diseases in the Mediterranean basin---implications for preparedness and adaptation policy. Int J Environ Res Public Heath 12:6745–6770

    Article  Google Scholar 

  83. Moo-Llanes DA, Arque-Chunga W, Carmona-Castro O et al (2017) Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Peru. Med Vet Entomol 31:123–131

    Article  CAS  PubMed  Google Scholar 

  84. McIntyre S, Rangel EF, Ready PD, Carvalho BM (2017) Species-specific ecological niche modeling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America. Parasit Vectors 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  85. Tiwary P, Kumar D, Mishra M, Singh RP, Rai M, Sundar S (2013) Seasonal variation in the prevalence of sand flies infected Leishmania donovani. PLoS One 8:e61370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gonzalez C, Wang O, Strutz SE, Gonzalez-Salazar C, Sanchez-Cordero V, Sarkar S (2010) Climate change and risk of leishmaniasis in North America: predictions from ecological niche models of vector and reservoir species. PLoS Negl Trop Dis 4:e585

    Article  PubMed  PubMed Central  Google Scholar 

  87. World Health Organization (2015) Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 90:33–43

    Google Scholar 

  88. Harrington D, Steuben F (2018) Lenahan. Chagas disease in the United States: a growing public health concern. Clinical Adviser. https://www.clinicaladvisor.com/infectious-diseases-information-center/chagas-disease-presentation-and-management/article/780512/

  89. Bern C, Kjos S, Yabsley MJ, Montgomery SP (2011) Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24:655–681

    Article  PubMed  PubMed Central  Google Scholar 

  90. Esteve-gassant MD, Perez de Leon AA, Romero-Salas D et al (2014) Pathogenic landscape of transboundary zoonotic diseases in the Mexico--US border along the Rio Grande. Front Public Health 2:177

    Google Scholar 

  91. Pinazo MJ, Gascon J (2015) The importance of the multidisciplinary approach to deal with the new epidemiology scenario of Chagas disease [global health]. Acta Trop 151:16–20

    Article  PubMed  Google Scholar 

  92. Conners EE, Vinetz JM, Weeks JR, Brower KC (2016) A global systemic review of Chagas disease prevalence among migrants. Acta Trop 156:68–78

    Article  PubMed  PubMed Central  Google Scholar 

  93. Tapia-Garay V, Figueroa DP, Maldonado A et al (2018) Assessing the risk zones of Chagas’ disease in Chile, in a world marked by global climatic change. Mem Inst Oswaldo Cruz 113:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  94. Carcavallo RU, Casas SC (1996) Some health impacts of global warming in South America: vector-borne diseases. J Epidemiol 6:S153–S157

    Article  Google Scholar 

  95. Asin S, Catala S (1995) Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol 81:1–7

    Article  CAS  PubMed  Google Scholar 

  96. Polley L, Thomson RCA (2009) Parasite zoonoses and climate change: molecular tools for tracking shifting boundaries. Trends Parasitol 25:285–291

    Article  CAS  PubMed  Google Scholar 

  97. McCreesh N, Nikulin G, Booth M (2015) Predicting the effects of climate change on Schistosoma mansonii transmission in eastern Africa. Parasit Vectors 8:4

    Article  PubMed  PubMed Central  Google Scholar 

  98. Zhou X, Yang G, Yang K et al (2008) Potential impact of climate change on schistosomiasis transmission in China. Am J Trop Med Hyg 78:188–194

    Article  PubMed  Google Scholar 

  99. Kalinda C, Chimbar M, Mukaratirwa S (2017) Implications of changing temperatures on the growth, fecundity and survival of intermediate host snails of schistosomiasis: a systematic review. Int J Environ Res Public Health 14:13

    Article  Google Scholar 

  100. Na W, Lee KE, Myubg HN, Jo SN, Jang JY (2016) Incidences of waterborne and foodborne diseases after meteorological disasters in South Korea. Ann Glob Health 82:848–857

    Article  PubMed  Google Scholar 

  101. Levy K, Woster AP, Goldstein RS, Carlton EJ (2016) Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, folding and drought. Environ Sci Technol 50:4905–4922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Cann KF, Thomas DR, Salmon RL, Wyn-Jones AP, Kay D (2013) Extreme water-related weather events and waterborne disease. Epidemiol Infect 141:671–686

    Article  CAS  PubMed  Google Scholar 

  103. Phung D, Huang C, Rutherford S, Chu C, Wang X, Nguyen M (2015) Climate change, water quality, and water-related diseases in the Mekong Delta Basin: a systemic review. Asia Pac J Public Health 27:265–276

    Article  PubMed  Google Scholar 

  104. Peterson RA, Polgreen LA, Sewell DK, Polgreen PM (2017) Warmer weather as a risk factor for cellulitis: a population-based investigation. Clin Infect Dis 65:1167–1173

    Article  PubMed  PubMed Central  Google Scholar 

  105. Poplgreen PM, Polgreen EL (2018) Infectious diseases, weather, and climate. Clin Infect Dis 66:815–817

    Article  Google Scholar 

  106. Leptospirosis ML (2017) USA [07]: [Puerto Rico] Flooding, need for diagnostic testing reagents, Article #20171017.5385237.ProMED-mail

    Google Scholar 

  107. Paris Agreement (2015) United Nations Framework Convention on Climate Change. Paris agreement. United Nations, New York

    Google Scholar 

  108. Colon-Gonzalez FJ, Harris I, Osborn T, Sao Bernado CS, Peres CA, Hunter PR, Lake IR (2018) Limiting global-mean temperature increase to 1.5-2°C could reduce the incidence and spatial spread of dengue fever in Latin America. Proc Natl Acad Sci U S A 115:6243–6248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Burke M, Davis WM, Diffenbaugh NS (2018) Large potential reduction in economic damages under UN mitigation targets. Nature 557:549–553

    Article  CAS  PubMed  Google Scholar 

  110. Tol RS (2018) The economic impacts of climate change. Rev Environ Econ Policy 12:4–25

    Article  Google Scholar 

  111. WHO/Europe/Media centre. Climate change increasingly affects small countries. http://www.euro.who.int/en/media-centre/sections/press-releaase/2018/climate-change-increasingly-affects-small-countries. Accessed 2 Oct 2018

  112. Health in the Americas+ 2017 Edition. Climate change and health. http://www.paho.org/salud-en-las-americas-2017/?p=53. Accessed 2 Oct 2018

  113. Costello A, Abbas M, Allen A et al (2009) Managing the health effects of climate change. Lancet 373:1693–1733

    Article  PubMed  Google Scholar 

  114. Resplandy L, Keeling RF, Eddebbar Y et al (2018) Quantification of ocean heat uptake from changes in atmosphere O2 and CO2 composition. Nature 563:105–108

    Article  CAS  PubMed  Google Scholar 

  115. Penn JL, Deutsch C, Payne JLO, Sperling EA (2018) Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362:eaat1327

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2020). Climate Change: Impact on Health and Infectious Diseases Globally. In: Current Trends and Concerns in Infectious Diseases. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-36966-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36966-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36965-1

  • Online ISBN: 978-3-030-36966-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics