Skip to main content

Infectious Complications of Biological Agents

  • Chapter
  • First Online:
Current Trends and Concerns in Infectious Diseases

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

  • 720 Accesses

Abstract

In the past decade, there has been a plethora of novel biological, immune-modulating agents marketed for the treatment of rheumatic disorders and autoimmune diseases with marked efficacy. However, these effective agents achieve their response through modulation of the host immune responses which are important in the control of various microbial pathogens. Thus, it is not surprising that a wide spectrum of opportunistic infections has been reported as complications of these novel agents. These medications made by molecular biological techniques and small molecule kinase inhibitors act by interfering with cytokine function or production, inhibiting signals required for T cell function, and deplete or inactivate B cells. Standard disease-modifying antirheumatic drugs [DMARDs] have been used for many decades for these autoimmune inflammatory disorders with moderate to very good responses, but were also complicated by increased infections, seen especially with corticosteroids, methotrexate, and cyclophosphamide. This chapter reviews the mechanisms of these novel therapeutic agents and their infectious complications in comparison to standard DMARDs, and also evaluates the risk of infections with novel biological agents now in use for various malignancies and hematological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chatham WW (2018) Glucocorticoid effects on the immune system. UpToDate. www.uptodate.com

  2. Atkinson JP, Frank MM (1974) Complement independent clearance of IgG sensitized erythrocytes: inhibition by cortisone. Blood 44:629

    Article  CAS  PubMed  Google Scholar 

  3. Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function. Annu Rev Immunol 18:309

    Article  CAS  PubMed  Google Scholar 

  4. Stuck A, Minder CE, Frey FJ (1989) Risk of infectious complications in taking glucocorticosteroids. Rev Infect Dis 11:954–963

    Article  CAS  PubMed  Google Scholar 

  5. Dixon WG, Abrahamowicz M, Beauchamp ME, Ray DW, Bernatsky S, Suissa S, Sylvestre MP (2012) Immediate and delayed impact of oral glucocorticoid therapy on risk of serious infection in older patients with rheumatoid arthritis: a nested case-controlled analysis. Ann Rheum Dis 71:1128–1133

    Article  CAS  PubMed  Google Scholar 

  6. Ginzler E, Diamond H, Kaplan D et al (1978) Computer analysis of factors influencing frequency of infections in systemic lupus erythematosus. Arthritis Rheum 21:37

    Article  CAS  PubMed  Google Scholar 

  7. Wolfe F, Caplan L, Michaud K (2006) Treatment for rheumatoid arthritis and the risk of hospitalization for pneumonia. Arthritis Rheum 54:628–634

    Article  CAS  PubMed  Google Scholar 

  8. Waljee AK, Rogers MAM, Li P et al (2017) Short term use of oral corticosteroids and related harms among adults in the United States: population based cohort study. BMJ 357:j1415

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klein NC, Go CH, Cunha BA (2001) Infections associated with steroid use. Infect Dis Clin N Am 15:423–432

    Article  CAS  Google Scholar 

  10. Pappas DA, Hooper MM, Kremer JM et al (2015) Herpes zoster reactivation in patients with rheumatoid arthritis: analysis of disease characteristics and disease-modifying antirheumatic drugs. Arthritis Care Res 67:1671–1678

    Article  CAS  Google Scholar 

  11. Migita K, Arai T, Ishizuka N et al (2013) Rates of serious intracellular infections in autoimmune disease patients receiving initial glucocorticoid therapy. PLoS One 8:e78699

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Genestier L, Paillot R, Fournel S, Ferraro C, Miossec P, Revillard JP (1998) Immunosuppressive properties of methotrexate: apoptosis and clonal deletion of activated peripheral T cells. J Clin Invest 102:322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Meara A, Headon B, Reen DJ (1985) Effect of methotrexate on the immune response in children with acute lymphatic leukemia. Immunopharmacology 9:33–38

    Article  PubMed  Google Scholar 

  14. Stenger AA, Houtman PM, Bruyn GA, Eggink HF, Pasma HR (1994) Pneumocystis carinii pneumonia associated with low dose methotrexate treatment for rheumatoid arthritis. Scand J Rheumatol 23:51

    Article  CAS  PubMed  Google Scholar 

  15. Kaneko Y, Suwa A, Ikeda Y, Hirakata M (2006) Pneumocystis jirovecii pneumonia associated with low-dose methotrexate treatment for rheumatoid arthritis: report of two cases and review of the literature. Mod Rheumatol 16:36

    Article  PubMed  Google Scholar 

  16. Boerbooms AM, Kerstens PJ, van Loenhout JW et al (1995) Infections during low-dose methotrexate treatment in rheumatoid arthritis. Semin Arthritis Rheum 24:411–421

    Article  CAS  PubMed  Google Scholar 

  17. Segal BH, Sneller MC (1997) Infectious complications of immunosuppressive therapy in patients with rheumatic diseases. Rheum Dis Clin N Am 23:219–237

    Article  CAS  Google Scholar 

  18. Kanik KS, Cash JM (1997) Does methotrexate increase the risk of infection or malignancy? Rheum Dis Clin N Am 23:955–967

    Article  CAS  Google Scholar 

  19. Doran MF, Crowson CS, Pond GR et al (2002) Predictors of infection in rheumatoid arthritis. Arthritis Rheum 46:2294–2300

    Article  PubMed  Google Scholar 

  20. Huskisson EC (1984) Azathioprine. Clin Rheum Dis 10:325

    CAS  PubMed  Google Scholar 

  21. Mckendry RJR (1991) Purine analogues. In: Dixon J, Furst BE (eds) Second line agents in treatment of rheumatic diseases. Marcel Decker, New York

    Google Scholar 

  22. Pinals RS (1976) Azathioprine in the treatment of chronic polyarthritis: long-term results and adverse effects in 25 patients. J Rheumatol 3:140

    CAS  PubMed  Google Scholar 

  23. Singh G, Fries JF, Spitz P, Williams CA (1989) Toxic effects of azathioprine in rheumatoid arthritis. A national post-marketing perspective. Arthritis Rheum 32:837

    Article  CAS  PubMed  Google Scholar 

  24. Mok MY, Ng WL, Yuen MF, Wong RW, Lau CS (2000) Safety of disease modifying anti-rheumatic agents in rheumatoid arthritis patients with chronic viral hepatitis. Clin Exp Rheumatol 18:363

    CAS  PubMed  Google Scholar 

  25. Anderson MA (2000) Dorland’s illustrated medical dictionary, 29th edn. Saunders, Philadelphia, p 444

    Google Scholar 

  26. CPS (2009) Compendium of pharmaceutical and specialties. Cyclosporine. Canadian Pharmacists Association, Ottawa, pp 1532–1536

    Google Scholar 

  27. Mosmann TR, Moore KW (1991) The role of IL-10 in cross-regulation of Th1 and Th2 responses. Immunol Today 12:A49

    Article  CAS  PubMed  Google Scholar 

  28. Engel P, Gomez-Puerta JA, Ramos-Casals M et al (2011) Therapeutic targeting of B cells for rheumatic autoimmune diseases. Pharmacol Rev 63:127

    Article  CAS  PubMed  Google Scholar 

  29. Furst DE (2018) Overview of biologic agents and kinase inhibitors in the rheumatic diseases. UpToDate. www.uptodate.com

  30. Reiner SL (2008) Peripheral T lymphocytes response and function. In: Paul WE (ed) Fundamental immunology, 6th edn. Wolter Kluwer/Lippincott, Williams & Wilkins, Philadelphia, pp 407–425

    Google Scholar 

  31. Noack M, Miossec P (2014) Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev 13:668–501

    Article  CAS  PubMed  Google Scholar 

  32. Brennan FM, Chantry D, Jackson A et al (1989) Inhibitory effect of TNF-α antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2:244–247

    Article  CAS  PubMed  Google Scholar 

  33. Aaltonen KJ, Virkki LM, Malmivaara A et al (2012) Systematic review and meta-analysis of the efficacy and safety of existing TNF blocking agents in treatment of rheumatoid arthritis. PLoS One 7:e30275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ghivizzani SC, Kang R, Georgescu HI et al (1997) Constitutive intra-articular expression of human IL-1β following gene transfer to rabbit synovium produces all major pathologies of human rheumatoid arthritis. J Immunol 159:3605–3612

    Google Scholar 

  35. Schlesinger N, Alten RE, Bardin T et al (2012) Canakinumab for acute gouty arthritis in patients with limited treatment options: results from two randomized, multicenter, active-controlled, double-blind trials and their initial extensions. Ann Rheum Dis 71:1839

    Article  CAS  PubMed  Google Scholar 

  36. Akira S, Taga T, Kishimoto T (1993) Interleukin-6 in biology and medicine. Adv Immunol 54:1

    Article  CAS  PubMed  Google Scholar 

  37. Waite JC, Skokos D (2012) Th17 response and inflammatory autoimmune diseases. Int J Inflamm 2012:819467

    Article  CAS  Google Scholar 

  38. Frleta M, Siebert S, McInnes IB (2014) The interleukin-17 pathway in psoriasis and psoriatic arthritis: disease pathogenesis and possibilities of treatment. Curr Rheumatol Rep 16:414

    Article  PubMed  CAS  Google Scholar 

  39. Genovese MC, Durez P, Rahman P et al (2013) Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomized, placebo-controlled study. Ann Rheum Dis 72:863

    Article  CAS  PubMed  Google Scholar 

  40. Lyakh L, Trinchieri G, Provezza L, Carra G, Gerosa F (2008) Regulation of interleukin-12/interleukin-23 production and the T-helper 17 response in humans. Immunol Rev 226:112–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Quatresooz P, Hermanns-Le T, Pierard GE, Humbert P, Delvenne P, Pierard-Franhimont C (2012) Ustekinumab in psoriasis immunopathology with emphasis on the Th17-IL-23 axis: a primer. J Biomed Biotechnol 2012:147413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233

    Article  CAS  PubMed  Google Scholar 

  43. Doran MF, Crowson CS, Pond GR, O’Fallon M, Gabriel SE (2002) Frequency of infection in patients with rheumatoid arthritis compared with controls. A population-based study. Arthritis Rheum 46:2287–2293

    Article  PubMed  Google Scholar 

  44. Winthrop KL (2012) Infections and biologic therapy in rheumatoid arthritis: our changing understanding of risk and prevention. Rheum Dis Clin N Am 38:727–745

    Article  Google Scholar 

  45. Wagner UG, Koetz K, Weyland CM, Goronzy JJ (1998) Perturbation of the T cell repertoire in rheumatoid arthritis. Proc Natl Acad Sci U S A 95:14447–14452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Horneff G (2015) Biologic-associated infections in pediatric rheumatology. Curr Rheumatol Rep 17:66

    Article  PubMed  CAS  Google Scholar 

  47. Takiainen M, Tynjala P, Vahasalo P, Lahdenne P (2015) Occurrence of adverse events in patients with JIA receiving biologic agents: long-term follow-up in a real-life setting. Rheumatology (Oxford) 54:1170–1176

    Article  CAS  Google Scholar 

  48. Becker I, Horneff G (2017) Risk of serious infection in juvenile idiopathic arthritis patients associated with tumor necrosis factor inhibitors and disease activity in German biologics in pediatric rheumatology registry. Arthritis Care Res 69:552–560

    Article  CAS  Google Scholar 

  49. Woerner A, Nicole R (2013) Infections in children treated with biological agents. Pediatr Infect Dis J 32:284–288

    Article  PubMed  Google Scholar 

  50. Tragiannidis A, Kyriakidis I, Zundorf I, Groll AH (2017) Invasive fungal infections in pediatric patients treated with tumor necrosis alpha [TNF-α] inhibitors. Mycoses 60:222–229

    Article  CAS  PubMed  Google Scholar 

  51. Horneff G (2015) Safety of biologic therapies for treatment of juvenile idiopathic arthritis. Expert Opin Drug Safety 14:1111–1126

    Article  CAS  Google Scholar 

  52. Ruperto N, Lovell DJ, Quartier P, Pediatric Rheumatology International Trials Organization, Pediatric Rheumatology Collaborative Study Group et al (2010) Long-term safety of abatacept in children with juvenile idiopathic arthritis. Arthritis Rheum 62:1792–1802

    Article  CAS  PubMed  Google Scholar 

  53. Alexeeva EI, Valieva SI, Bzarova TM et al (2011) Efficacy and safety of repeated courses of rituximab treatment in patients with severe refractory juvenile idiopathic arthritis. Clin Rheumatol 30:1163–1172

    Article  PubMed  Google Scholar 

  54. Cunnane G (2003) Infections and biological therapy in rheumatoid arthritis. Best Pract Res Clin Rheumatol 17:34563

    Article  Google Scholar 

  55. Keane J, Gershon S, Wise RP et al (2001) Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N Engl J Med 345:1098–1104

    Article  CAS  PubMed  Google Scholar 

  56. Hamilton CD (2004) Infectious complications of treatment with biological agents. Curr Opin Rheumatol 16:393–398

    Article  PubMed  Google Scholar 

  57. Bongartz T, Sutton AJ, Buchan I, Montori V (2006) Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies. A systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 295:2275–2285

    Article  CAS  PubMed  Google Scholar 

  58. Furst DE (2010) The risk of infections with biologic therapies for rheumatoid arthritis. Semin Arthritis Rheum 39:327–346

    Article  CAS  PubMed  Google Scholar 

  59. Wolfe F, Caplan L, Michaud K (2006) Treatment for rheumatoid arthritis and the risk of hospitalization for pneumonia. Associations with prednisone, disease-modifying antirheumatic drugs, and anti-tumor necrosis factor therapy. Arthritis Rheum 54:628–634

    Article  CAS  PubMed  Google Scholar 

  60. Curtis JR, Yang S, Patkar M et al (2014) Risk of hospitalized bacterial infections associated with biological treatments among US veterans with rheumatoid arthritis. Arthritis Care Res 66:990–997

    Article  CAS  Google Scholar 

  61. Yun H, Xie F, Delzell E et al (2015) Risk of hospitalized infection in rheumatoid arthritis patients receiving biologics following previous infection while on treatment with anti-TNF therapy. Ann Rheum Dis 74:1065–1071

    Article  CAS  PubMed  Google Scholar 

  62. Grijalva CG, Chen L, Delzell E et al (2011) Initiation of tumor necrosis factor-antagonists and the risk of hospitalization for infection in patients with autoimmune diseases. JAMA 306:2331–2339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kawashima H, Kagami SI, Kashiwakuma D, Takahashi K, Yokota M, Furuta S, Iwamoto I (2017) Long-term biologic agents does not increase the risk of serious infections in elderly patients with rheumatoid arthritis. Rheumatol Int 37:369–376

    Article  CAS  PubMed  Google Scholar 

  64. Ramiro S, Gaujoux-Viala C, Nam JL et al (2014) Safety of synthetic and biological DMARDs: a systematic review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 73:529–535

    Article  CAS  PubMed  Google Scholar 

  65. Michaud TL, Rho YH, Shamliyan T et al (2014) The comparative safety of tumor necrosis factor inhibitors in rheumatoid arthritis: a meta-analysis update of 44 trials. Am J Med 127:1208–1232

    Article  CAS  PubMed  Google Scholar 

  66. Singh JA, Cameron C, Noorhaloochi S et al (2015) The risk of serious infection with biologics in treating patients with rheumatoid arthritis: a systematic review and meta-analysis. Lancet 386:258–265

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wallis D, Thavaneswaran A, Haroon N, Ayearst R, Inman RD (2015) Tumor necrosis factor inhibitor and infection risk in axial spondyloarthritis: results from a longitudinal observational cohort. Rheumatology 54:152–156

    Article  CAS  PubMed  Google Scholar 

  68. Kourbeti IS, Ziakas P, Mylonakis E (2014) Biologic therapies in rheumatoid arthritis and the risk of opportunistic infections: a meta-analysis. Clin Infect Dis 58:1649–1657

    Article  PubMed  Google Scholar 

  69. Strangfeld A, Listing J, Herzer P, Liebhaber A, Rockwitz K, Richter C, Zink A (2009) Risk of herpes zoster in patients with rheumatoid arthritis treated with anti-TNF-α agents. JAMA 301:737–744

    Article  CAS  PubMed  Google Scholar 

  70. Galloway JH, Mercer LK, Moseley A et al (2013) Risk of skin and soft tissue infections [including shingles] in patients exposed to anti-tumor necrosis factor therapy: results from the British Society for Rheumatology Biologics Register. Ann Rheum Dis 72:229–234

    Article  CAS  PubMed  Google Scholar 

  71. Pappas DA, Hooper MM, Kremer JM et al (2015) Herpes zoster reactivation in patients with rheumatoid arthritis: analysis of disease characteristics and diseases-modifying antirheumatic drugs. Arthritis Care Res 67:1671–1678

    Article  CAS  Google Scholar 

  72. Yun H, Xie F, Delzell E et al (2015) Risks of herpes zoster in patients with rheumatoid arthritis according to biologic disease-modifying therapy. Arthritis Care Res 67:731–736

    Article  CAS  Google Scholar 

  73. Marra F, Lo E, Kalashnikov V, Richardson K (2016) Risk of herpes zoster in individuals on biologics, disease-modifying antirheumatic drugs, and/or corticosteroids for autoimmune diseases: a systemic review and meta-analysis. Open Forum Infect Dis 3:ofw205.e Colllection 2016

    Article  PubMed  PubMed Central  Google Scholar 

  74. Curtis JR, Xie F, Yun H, Bernatsky S, Winthrop KL (2016) Real-world comparative risks of herpes virus infections in tofacitinib and biological-treated patients with rheumatoid arthritis. Ann Rheum Dis 75:1843–1847

    Article  CAS  PubMed  Google Scholar 

  75. Strand V, Ahadieh S, French J et al (2015) Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther 17:362

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Cohen S, Radominski SC, Gomez-Reino JJ et al (2014) Analysis of infections and all-cause mortality in phase II, phase III, and long-term extension studies of tofacitinib in patients with rheumatoid arthritis. Arthitis Rheum 66:2924–2937

    Article  CAS  Google Scholar 

  77. Salt E, Wiggins AT, Rayens MK et al (2015) Risk factors for targeted fungal and mycobacterial infections in patients taking TNF-alpha inhibitors. Arthritis Rheum 68:597. https://doi.org/10.1002/art.39468

    Article  CAS  Google Scholar 

  78. Kalib RE, Fiorentino DF, Lebwohl MG et al (2015) Risk of serious infection with biologic and systemic treatment of psoriasis. Results from the psoriasis longitudinal assessment and registry [PSOLAR]. JAMA Dermatol 15:961–969. https://doi.org/10.1001/jamadermatol.2015.0718

    Article  Google Scholar 

  79. George MD, Baker JF, Winthrop K et al (2019) Risk of biologics and glucorticoids in patients with rheumatoid arthritis undergoing arthroplasty. Ann Intern Med 170:825–836

    Article  PubMed  PubMed Central  Google Scholar 

  80. Cordtz RL, Zobbe K, Hojgaard P et al (2018) Predictors of revision, prosthetic joint infection and mortality following total hip or total knee arthroplasty in patients with rheumatoid arthritis: a nationwide cohort study using Dutch healthcare registers. Ann Rheum Dis 77:281–288

    Article  CAS  PubMed  Google Scholar 

  81. Kim WB, Marinas JEC, Qiang J, Shahbaz A, Greaves S, Yeung J (2015) Adverse events resulting in withdrawal of biologic therapy for psoriasis in real-world clinical practice: a Canadian multicenter retrospective study. J Am Acad Dermatol 73:237–241

    Article  PubMed  Google Scholar 

  82. Epple HJ (2009) Therapy- and non-therapy-dependent infectious complications in inflammatory bowel disease. Dig Dis 27:555–559

    Article  PubMed  Google Scholar 

  83. Bonovas S, Fiorino G, Allocca M, Lytras T, Nikolopoulos GK, Peyrin-Biroulet L, Danese S (2016) Biologic therapies and risk of infection and malignancy in patients with inflammatory bowel disease: a systematic review and network meta-analysis. Clin Gastroenterol Hepatol 14:1385–1397

    Article  PubMed  Google Scholar 

  84. Ford AC, Peyrin-Biroulet L (2013) Opportunistic infections with anti-tumor necrosis factor-α therapy in inflammatory bowel disease: meta-analysis of randomized controlled trials. Am J Gastroenterol 108:1268–1276

    Article  CAS  PubMed  Google Scholar 

  85. Lawrence SJ, Sadarangani M, Jacobson K (2017) Pneumocystis jirovecii pneumonia in pediatric inflammatory bowel disease: a case report and literature review. Front Pediatr 5:161. https://doi.org/10.3389/ped.2017.00161

    Article  PubMed  PubMed Central  Google Scholar 

  86. Salmon-Ceron D, Tubach F, Lortholary O et al (2011) Drug-specific risk of non-tuberculosis opportunistic infections in patients receiving anti-TNF therapy reported to the 3-year prospective French RATIO registry. Ann Rheum 70:616–623

    Article  CAS  Google Scholar 

  87. Desai RJ, Bateman BT, Huybrechts KF et al (2017) Risk of serious infections associated with use of immunosuppressive agents in pregnant women with autoimmune inflammatory conditions: cohort study. BMJ 356:j895

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yusof MY, Vital EM, Buch MH (2015) B cell therapies, approved and emerging: a review of infectious risk and prevention during therapy. Curr Rheumatol Rep 17:65. https://doi.org/10.1007/s11926-015-0539-7

    Article  Google Scholar 

  89. Winthrop KL, Mariette X, Silva JT et al (2018) ESCMID Study Group for Infections in Compromised Hosts [ESGICH] Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective [soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors]. Clin Microbiol Infect 24:S21–S40. https://doi.org/10.1016/j.cmi.2018.02.002

    Article  CAS  PubMed  Google Scholar 

  90. Redelman-Sidi G, Michielin O, Cervera C, Ribi C, Aguado JM, Fernandez-Ruiz M, Manuel O (2018) ESCMID Study Group for Infections in Compromised Hosts [ESGICH] Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective [immune checkpoint inhibitors, cell adhesion inhibitors, shingosine-1-phosphate receptor modulators and proteasome inhibitors]. Clin Microbiol Infect 24:S95–S107

    Article  PubMed  PubMed Central  Google Scholar 

  91. Miokulska M, Lanini S, Gudiol C, Drgona L, Ippolito G, Fernandez-Ruiz M (2018) ESCMID Study Group for Infections in Compromised Hosts [ESGICH] Consensus Document on the safety of targeted and biological therapies: an infectious disease perspective [agents targeting lymphoid cells surface antigens [1]: CD19, CD20 and CD52]. Clin Microbiol Infect 24:S71–S82

    Article  CAS  Google Scholar 

  92. McNamarra LA, Topaz N, Wang X, Hairi S, Fox L, MacNeil JR (2017) High risk for invasive meningococcal disease among patients receiving eculizumab [Solaris] despite receipt of meningococcal vaccine. MMWR Morb Mortal Wkly Rep 66:734

    Article  Google Scholar 

  93. Del Castillo M, Romero FA, Arguello E, Kyi C, Postow MA, Redelman-Sidi G (2016) The spectrum of serious infections among patients receiving checkpoint blockade for the treatment of melanoma. Clin Infect Dis 63:1490–1493

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Picchi H, Mateus C, Chouaid C et al (2018) Infectious complications associated with the use of immune checkpoint inhibitors in oncology: reactivation of tuberculosis after PD-1 treatment. Clin Microbiaol Infect 24:216–218

    Article  CAS  Google Scholar 

  95. Wijnands JMA, Zhu F, Kingwell E et al (2018) Disease-modifying drugs for multiple sclerosis and infection risk: a cohort study. J Neurosurg Psychiatry 89:1–7. https://doi.org/10.1136/jnnp-2017-317493

    Article  Google Scholar 

  96. Grebenciucova E, Pruitt A (2017) Infection in patients receiving multiple sclerosis disease-modifying therapies. Curr Neurol Neurosci Rep 17:88

    Article  PubMed  Google Scholar 

  97. Antoniol C, Jilek S, Schuluep M et al (2012) Impairment of JCV-specific T-cell response by corticotherapy : effect on PML-IRIS management? Neurology 79:2258–2264

    Article  CAS  PubMed  Google Scholar 

  98. Fine AJ, Sorbello A, Kortepeter C, Scarazzini L (2013) Central nervous system herpes simplex and varicella zoster virus infections in natalizumab-treated patients. Clin Infect Dis 57:849–852

    Article  CAS  PubMed  Google Scholar 

  99. Bye WA, Jairath V, Travis SPL (2017) Systematic review: the safety of vedolizumab for the treatment of inflammatory bowel disease. Aliment Pharmacol Ther 46:3–15

    Article  CAS  PubMed  Google Scholar 

  100. Moulis G, Lapeyre-Mestre M, Palmaro A, Sailler I (2017) Infections in nonsplenectomized persistent or chronic primary immune thrombocytopenia adults: risk factors and vaccination effect. J Thromb Haemost 15:785–791

    Article  CAS  PubMed  Google Scholar 

  101. Manasanch EE, Orlowski RZ (2017) Proteosome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Blimark C, Holmberg E, Meliqvist UH et al (2015) Multiple myeloma and infections: a population based study on 9253 multiple myeloma patients. Haematologica 100:107–113

    Article  PubMed  PubMed Central  Google Scholar 

  103. Kim SJ, Kim K, Kim BS et al (2008) Bortezomib and the increased incidence of herpes zoster in patients with multiple myeloma. Clin Lymphoma Myeloma 8:237–240

    Article  CAS  PubMed  Google Scholar 

  104. Teh BW, Worth LJ, Harrison SJ, Thursky KA, Slavin MA (2015) Risks and burden of viral respiratory tract infections in patients with multiple myeloma in the era of immunomodulatory drugs and bortezomib: experience at an Australian Cancer hospital. Support Care Cancer 23:1901–1906

    Article  PubMed  Google Scholar 

  105. Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang Y-S (2018) Adavnces in strudies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 17:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Strijbis K, Tafesse FG, Fairn GD et al (2013) Bruton tyrosine kinase [BTK] and Vav1 contribute to dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog 9:e1003446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ghez D, Calleja A, Protin C et al (2018) Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood 131:1955. https://doi.org/10.1182/blood-2017-11-818286

    Article  CAS  PubMed  Google Scholar 

  108. Vaughese T, Taur Y, Cohen N, Palomba ML, Seo SK, Hohl TM, Redelman-Sidi G (2018) Serious infections in patients receiving ibrutinib for treatment of lymphoid cancer. Clin Infect Dis 67:687–692

    Article  CAS  Google Scholar 

  109. Pozsgay J, Szekanecz Z, Sarmay G (2017) Antigen-specific immunotherapies in rheumatic diseases. Nat Rev Rheumatol 13:525–537

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2020). Infectious Complications of Biological Agents. In: Current Trends and Concerns in Infectious Diseases. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-36966-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36966-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36965-1

  • Online ISBN: 978-3-030-36966-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics