Skip to main content

Emerging and Difficult to Treat Nontuberculous Mycobacteria Infections

  • Chapter
  • First Online:
Current Trends and Concerns in Infectious Diseases

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

Abstract

Nontuberculous mycobacteria [NTM] are a large group of environmental organisms [>150 species] that are distributed worldwide, but only a few are pathogenic and known to cause human diseases. They are widely distributed in waterways and soil and susceptible people become infected mainly from repeated inhalation of bioaerosols. The global epidemiology of NTM infections is not well delineated as they are not reportable to public health services, but the incidence of NTM lung disease is increasing in the United States and in many other countries. Chronic, debilitating lung disease is the most common manifestations of NTM infections. Of concern is the global outbreak of the novel mycobacteria, Mycobacterium chimaera, from contaminated heater cooler units in cardiac surgery units resulting in cardiac and extracardiac diseases or manifestations. Mycobacterium abscessus complex infections, primarily cause disease in the immunosuppressed with pulmonary or extrapulmonary infections, are the most difficult to treat due to its multidrug resistance pattern. This chapter will review Mycobacterium avium complex [MAC] lung infections, M. abscessus and M. chimaera infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Honda JR, Virdi R, Chan ED (2018) Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front Microbiol 9:2029

    Article  PubMed  PubMed Central  Google Scholar 

  2. Falkinham JO III (2013) Ecology of nontuberculous mycobacteria-where do human infections come from? Semin Respir Crit Care Med 34:95–102

    Article  PubMed  Google Scholar 

  3. Adejemian J, Olivier KN, Seitz AE, Falkinham JO III, Holland SM, Prevosts DR (2012) Spatial clusters of nontuberculous mycobacteria lung disease in the United States. Am J Respir Crit Care Med 186:553–558

    Article  Google Scholar 

  4. Forbes BA, Hall GS, Miller MB et al (2018) Practice guidelines for clinical microbiology laboratories: mycobacteria. Clin Microbiol Rev 31:e00038–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tortoli E (2014) Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 27(4):727–752. https://doi.org/10.11128/CMR.00035-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prevots DR, Marrras TK (2015) Epidemiology of human pulmonary infection with non-tuberculous mycobacteria: a review. Clin Chest Med 36:13–34

    Article  PubMed  Google Scholar 

  7. Lee H, Myung W, Koh W-J, Moon SM, Jhun BW (2019) Epidemiology of nontuberculous mycobacteria infection, South Korea, 2007-2016. Emerg Infect Dis 25:569–572. https://doi.org/10.3201/eid2503.181597

    Article  PubMed  PubMed Central  Google Scholar 

  8. Namkoong H, Kurashima A, Morimoto K et al (2016) Epidemiology of pulmonary nontuberculous mycobacterial disease. Jpn Emerg Infect Dis 22:1116–1117

    Article  Google Scholar 

  9. Jing H, Wang H, Wang Y et al (2012) Prevalence of nontuberculous mycobacteria infection, China, 2004-2009. Emerg Infect Dis 18:527–528

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chetchotisakd P, Mootsikapun P, Anunnatsiri S et al (2000) Disseminated infection due to rapid growing mycobacteria in immunocompetent hosts presenting with chronic lymphadenopathy: a previously unrecognized clinical entity. Clin Infect Dis 30:29–34

    Article  CAS  PubMed  Google Scholar 

  11. Rosenzweig SD, Holland SM (2005) Defects in the interferon-gamma and interleukin pathways. Immunol Rev 203:29–34

    Article  Google Scholar 

  12. Prince DS, Peterson DD, Steiner RM, Gottlieb JE, Scott R, Israel HL, Figueroa WG, Fish JE (1989) Infection with Mycobacterium avium complex in patients without predisposing conditions. N Engl J Med 321:863–868

    Article  CAS  PubMed  Google Scholar 

  13. Kim RD, Greenberg DE, Ehrmantraut ME et al (2008) Pulmonary nontuberculous mycobacterial disease. Prospective study of a distinct preexisting syndrome. Am J Respir Crit Care Med 178:1066–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schorey JS, Sweet L (2008) The mycobacterial glycopeptidolipids: structure, function, and their role in pathogenesis. Glycobiology 18:832–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Busatto C, Vianna JS, da Silva Junior LV, Ramis IB, Almeida da Silva PE (2019) Mycobacterium avium: an overview. Tuberculosis 114:127–134

    Article  CAS  PubMed  Google Scholar 

  16. Chatterjee D, Khoo KH (2001) The surface glycopeptidolipids of mycobacteria: structures and biological properties. Cell Mol Life Sci 58:2018–2042

    Article  CAS  PubMed  Google Scholar 

  17. Maekura R, Okuda Y, Hirotani A et al (2005) Clinical and prognostic importance of serotyping Mycobacterium avium-Mycobacterium intracellulare complex isolates in human immunodeficiency virus-negative patients. J Clin Microbiol 43:3150–3158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carter G, Wu M, Drummond DC, Bermudez LE (2003) Characterization of biofilm formation by clinical isolates of Mycobacterium avium. J Med Microbiol 52:747–752

    Article  CAS  PubMed  Google Scholar 

  19. Lake MA, Ambrose LR, Lipman MCI, Lowe DM (2016) “Why me, why now?” using clinical immunology and epidemiology to explain who gets nontuberculous mycobacterial infection. BMC Med 14:54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Casanova J-L, Abel L (2004) The human model: a genetic dissection to infection in natural conditions. Nat Rev Immunol 4:55–66

    Article  CAS  PubMed  Google Scholar 

  21. Embil J, Warren P, Yakrus M, Stark R, Corne S, Forrest D, Hershfield E (1997) Pulmonary illness associated with exposure to Mycobacterium avium complex in hot tub water. Chest 111:813–816

    Article  CAS  PubMed  Google Scholar 

  22. Stout JE, Koh W-J, Yew WW (2016) Update on pulmonary disease due to non-tuberculous mycobacteria. Int J Infect Dis 45:123–134

    Article  PubMed  Google Scholar 

  23. Daley C (2017) Mycobacterium avium complex disease. Microbiol Spectr 5(2):TNM17-0045-2017. https://doi.org/10.1128/microbialspec.TNM17-0045-2017

    Article  Google Scholar 

  24. Buchacz K, Lau B, Jing Y et al (2016) Incidence of AIDS-defining opportunistic infections in a multicohort analysis of HIV-infected persons in the United States and Canada, 2000-2010. J Infect Dis 214:862–872

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yoo J-W, Jo K-W, Kim S-H et al (2016) Incidence, characteristics, and treatment outcomes of mycobacterial diseases in transplant recipients. Transpl Int 29:549–558

    Article  PubMed  Google Scholar 

  26. Horsburgh CR Jr, Metchock B, Gordon SM, Havlik JA Jr, McGowan JE Jr, Thompson SE III (1994) Predictors of survival in patients with AIDS and disseminated Mycobacterium avium complex disease. J Infect Dis 170:573–577

    Article  PubMed  Google Scholar 

  27. Chin DP, Reingold AL, Stone EN et al (1994) The impact of Mycobacterium avium complex bacteremia and its treatment on survival of AIDS patients—a prospective study. J Infect Dis 170:578–584

    Article  CAS  PubMed  Google Scholar 

  28. Schon T, Chryssanthou E (2017) Minimum inhibitory concentration distribution for Mycobacterium avium complex-towards evidence-based susceptibility breakpoints. Int J Infect Dis 55:122–124

    Article  PubMed  CAS  Google Scholar 

  29. Brown-Elliott BA, Woods GL (2019) Mini review: antimycobacterial susceptibility testing of nontuberculous mycobacteria. J Clin Microbiol 57(10):e00834-19. https://doi.org/10.1128/JCM.00834-19

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huang CC, Wu MF, Chen HC, Huang WC (2018) In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. J Microbiol Immunol Infect 51:636–643

    Article  CAS  PubMed  Google Scholar 

  31. Rodrigues L, Sampaio D, Couto I, Machado D, Keru WV, Amaral L, Viveiros M (2009) The role of efflux pumps in macrolide resistance in Mycobacterium avium complex. Int J Antimicrob Agents Chemother 34:529–533

    Article  CAS  Google Scholar 

  32. van Ingren J, Boeree MJ, van Soolingen D, Moutton JW (2012) Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 15:149–161

    Article  CAS  Google Scholar 

  33. Brown-Elliott BA, Nash KA, Wallace RJ Jr (2012) Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 25:545–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee G, Lee KS, Moon JW, Koh WJ, Jeong BH, Jeong YJ, Woo S (2013) Nodular bronchiectatic Mycobacterium avium complex pulmonary disease. Natural course on serial computed tomographic scans. Ann Am Thorac Soc 10:299–306

    Article  PubMed  Google Scholar 

  35. Kwon BS, Lee JH, Koh Y et al (2019) The natural history of non-cavitary nodular bronchiectatic Mycobacterium avium complex lung disease. Respir Med 150:45–50

    Article  PubMed  Google Scholar 

  36. Pan S-W, Shu C-C, Feng J-H, Wang J-Y, Chan Y-J, Yu C-J, Su W-J (2017) Microbiological persistence in patients with Mycobacterium avium complex lung disease: the predictors and the impact on radiographic progression. Clin Infect Dis 65:927–934

    Article  PubMed  Google Scholar 

  37. Kobashi Y, Matsuushima T, Oka M (2007) A double-blind randomized study of aminoglycoside infusion with combined therapy for pulmonary Mycobacterium avium complex disease. Respir Med 101:130–138

    Article  PubMed  Google Scholar 

  38. Kim O-H, Kwon BS, Han M et al (2019) Association between duration of aminoglycoside treatment and outcome of cavitary Mycobacterium avium complex lung disease. Clin Infect Dis 68:1870–1876

    PubMed  Google Scholar 

  39. Griffith DF, Aksamit T, Brown-Elliott BA et al (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial disease. Am J Repir Crit Care Med 175:367–416

    Article  CAS  Google Scholar 

  40. Jeong BH, Jeon K, Park HY et al (2015) Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 191:96–103

    Article  CAS  PubMed  Google Scholar 

  41. Luo J, Yu X, Jiang G et al (2018) In vitro activity of clofazimine against nontuberculous mycobacteria isolated in Beijing, China. Antimicrob Agents Chemother 62:e00072-18

    Article  PubMed  PubMed Central  Google Scholar 

  42. Field SK, Cowie RL (2003) Treatment of Mycobacterium avium –intracellulare complex lung disease with a macrolide, ethambutol and clofazimine. Chest 124:1482–1486

    Article  CAS  PubMed  Google Scholar 

  43. Jarand J, Davis JD, Cowie RL, Field SK, Fisher DA (2016) Long-term follow-up of Mycobacterium avium complex lung disease in patients treated with regimens including clofazimine and/or rifampin. Chest 149:1285–1293

    Article  PubMed  Google Scholar 

  44. Koh W-J, Moon SM, Kim S-Y et al (2017) Outcomes of Mycobacterial avium complex lung disease based on clinical phenotype. Eur Repir J 50:1602503. https://doi.org/10.1183/1399300302503-2016

    Article  Google Scholar 

  45. Field SK, Fisher D, Cowie RL (2004) Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest 126:566–581

    Article  PubMed  Google Scholar 

  46. Kwak N, Park J, Kim E, Lee C-H, Han SK, Yim J-J (2017) Treatment outcomes of Mycobacterium avium complex lung disease: a systematic review and meta-analysis. Clin Infect Dis 65:1077–1084

    Article  CAS  PubMed  Google Scholar 

  47. Miwa S, Shira M, Toyoshima M et al (2014) Efficacy of clarithromycin and ethambutol for Mycobacterium avium complex pulmonary disease. A preliminary study. Ann Am Thorac Soc 11:23–29

    Article  PubMed  CAS  Google Scholar 

  48. Jhun BW, Kim SY, Moon SM et al (2018) Development of macrolide resistance and reinfection in refractory Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 198:1322–1330

    Article  CAS  PubMed  Google Scholar 

  49. McCoy CE (2018) Understanding the use of composite endpoints in clinical trials. West J Emerg Med 19:641–644

    Article  Google Scholar 

  50. Gochi M, Takayanagi N, Kanaauchi T, Ishiguro T, Yanagisawa T, Sugita Y (2015) Retrospective study of the predictors of mortality and radiographic deterioration in 782 patients with nodular/bronchiectatic Mycobacterium avium complex lung disease. BMJ Open 5(8):e008058

    Article  PubMed  PubMed Central  Google Scholar 

  51. Srivastava S, Deshpande D, Gumbo T (2017) Failure of the azithromycin and ethambutol combination regimen in the hollow-fiber system model of pulmonary Mycobacterium avium infection is due to acquired resistance. J Antimicrob Chemother 72(Suppl 2):120–123

    Google Scholar 

  52. Griffith DE, Eagle G, Thompson R et al (2018) Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex [CONVERT]. A prospective, open-label, randomized study. Am J Respir Crit Care Med 09:14

    Google Scholar 

  53. Collins LF, Clement ME, Stout JE (2017) Incidence, long-term outcomes, and healthcare utilization of patients with human immunodeficiency virus/acquired immune deficiency syndrome and disseminated Mycobacterium avium complex from 1992-2015. Open Forum Infect Dis 4(3):ofx120

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kobayashi T, Nishijima T, Teruya K, Aoki T, Kikuchi Y, Oka S, Gatanaga H (2016) High mortality of disseminated non-tuberculous mycobacteria in HIV-infected patients in the retroviral era. PLoS One 11:e0151682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Gordin FM, Sullam PM, Shafram SD, Cohn DL, Wynee B, Paxton L, Perry K, Horsbururgh CR Jr (1999) A randomized, placebo-controlled study of rifabutin added to a regimen of clarithromycin and ethambutol for treatment of disseminated infection with Mycobacterium avium complex. Clin Infect Dis 28:1080–1085

    Article  CAS  PubMed  Google Scholar 

  56. Benson CA, Williams PL, Currier JS et al (2003) A prospective, randomized trial examining the efficacy and safety of clarithromycin in combination with ethambutol, rifabutin, or both for the treatment of disseminated Mycobacterium avium complex disease in persons with acquired immunodeficiency syndrome. Clin Infect Dis 37:1234–1243

    Article  CAS  PubMed  Google Scholar 

  57. Lee MR, Chien JY, Huang YT et al (2017) Clinical features of patients with bacteremia caused by Mycobacterium avium complex species and antimicrobial susceptibility of the isolates at a medical center in Taiwan, 2008-2014. Int J Antimicrob Agents Chemother 50:35–40

    Article  CAS  Google Scholar 

  58. Hedary M, Nasiri MJ, Mirsaeidi M, Jazi FM, Khoshnood S, Drancourt M, Darban-Sarokhalil D (2019) Mycobacterium avium complex infection in patients with human immunodeficiency virus: a systematic review and meta-analysis. J Cell Physiol 234:9994–10001

    Article  CAS  Google Scholar 

  59. Sridhar S, Fung KSC, Chan JFW et al (2016) High recurrence rate supports need for secondary prophylaxis in non-HIV patients with disseminated Mycobacterium avium complex infection: a multicenter observational study. BMC Infect Dis 16:74

    Article  PubMed  PubMed Central  Google Scholar 

  60. Holland SM, Eisenstein EM, Kuhns DB, Turner ML, Fleisher TA, Strober W, Gallin JI (1994) Treatment of refractory disseminated mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med 330:1348–1355

    Article  CAS  PubMed  Google Scholar 

  61. Koh W-J (2017) Nontuberculous mycobacteria—overview. Microbiol Spectr 5(1):TNM17-0024-2016. https://doi.org/10.1128/microbiolspec.TNM17-0024-2016

    Article  Google Scholar 

  62. Christensen JB, Koeppe J (2010) Mycobacterium avium complex cervical lymphadenitis in an immunocompetent adult. Clin Vaccine Immunol 17:1488–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Blyth C, Best E, Jones C, Nurse C, Goldwater P, Daley A, Burgner D, Henry G, Palsanthiran P (2009) Nontuberculous mycobacterial infection in children: a prospective study. Pediatr Infect Dis J 28:801–805

    Article  PubMed  Google Scholar 

  64. Panesar J, Higgins K, Daya H, Forte V, Allen U (2003) Nontuberculous mycobacterial cervical adenitis: a ten-year retrospective review. Laryngoscope 113:149–154

    Article  PubMed  Google Scholar 

  65. Lindeboom JA, Kuijper EJ, van Coppenraet B, Lindeboom R, Prins JM (2007) Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial. Clin Infect Dis 44:1057–1064

    Article  CAS  PubMed  Google Scholar 

  66. Liondeboom JA (2011) Conservative wait-and-see therapy versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children. Clin Infect Dis 52:180–184

    Article  Google Scholar 

  67. Hatakeyama S, Ohama Y, Okazaki M, Nuku Y, Moriya K (2017) Antimicrobial susceptibility testing of rapidly growing mycobacteria isolated in Japan. BMC Infect Dis 17:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pang H, Li G, Zhao X, Liu H, Wan K, Yu P (2015) Drug susceptibility testing of 31 antimicrobial agents on rapidly growing mycobacteria isolates from China. Biomed Res Int 2015:419392. https://doi.org/10.1155/2015/419392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. De Groote MA, Huitt G (2006) Infections due to rapidly growing mycobacteria. Clin Infect Dis 42:175663

    Article  Google Scholar 

  70. Han XY, De I, Jacobson KL (2007) Rapidly growing mycobacteria. Clinical and microbiological studies of 115 cases. Am J Clin Pathol 128:612–621

    Article  PubMed  Google Scholar 

  71. Shen Y, Wang X, Jin W, Zhang X, Chen J, Zhang W (2018) In vitro susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum isolates to 30 antibiotics. Biomed Res Int 2018:4902941. https://doi.org/10.1155/2018/4902941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aziz DB, Law JL, Wu M-L, Gengenbacher M, Teo JW, Dartois V, Dick T (2017) Rifabutin is active against Mycobacterium abscessus complex. Antimicrob Agents Chemother 61:e00155–e00117

    Article  PubMed  PubMed Central  Google Scholar 

  73. Singh S, Bouzinbi N, Chaturvedi V, Godreuil S, Kremer L (2014) In vitro evaluation of a new combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin Microbiol Infect 20:01124–01127

    Article  CAS  Google Scholar 

  74. Shen G-H, Wu B-D, Hu S-T, Lin C-F, Wu K-M, Chen J-H (2010) High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents 35:400–404

    Article  CAS  PubMed  Google Scholar 

  75. Luthra S, Romanski A, Sanders P (2018) The role of antibiotic-target-modifying and antibiotic-modifying enzymes in Mycobacterium abscessus drug resistance. Front Microbiol 9:2179

    Article  PubMed  PubMed Central  Google Scholar 

  76. Pandry R, Chen L, Manca C et al (2019) Dual β-lactam combinations highly active against Mycobacterium abscessus complex in vitro. MBio 10:e02895-18. https://doi.org/10.1128/mBio.02895-18

    Article  Google Scholar 

  77. Kumar P, Chauhan V, Silva JRA et al (2017) Mycobacterium abscessus L,D-transpeptidases are susceptible to inactivation by carbapenems and cephalosporins but not penicillins. Antimicrob Agents Chemother 61:e008666-17

    Google Scholar 

  78. Soroka D, Ourghanlian C, Compain F et al (2017) Inhibition of β-lactamases of mycobacteria by avibactum and clavulanate. J Antimicrob Chemother 72:1081–1088

    CAS  PubMed  Google Scholar 

  79. Lefebvre A-L, Moigne VL, Bermut A et al (2017) Inhibition of the β-lactamase BlaMab by avibactam improves the in vitro and in vivo efficacy of imipenem against Mycobacterium abscessus. Antimicrob Agents Chemother 61:e02440-16. https://doi.org/10.1128/ACC.02440-16

    Article  PubMed  PubMed Central  Google Scholar 

  80. Deshpande D, Srivastava S, Chapagain ML, Lee PS, Cirrincione KN, Pasipanadya JG, Gumbo T (2017) The discovery of cetazidime/avibactam as an anti-Mycobacterium avium agent. J Antimicrob Chemother 72(Suppl 2):ii36–ii42

    Article  CAS  Google Scholar 

  81. Prammananan T, Sander P, Brown BA, Frischkorn K, Go O, Zhang Y, Bottger EC, Wallace RJ Jr (1998) A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptoamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 177:1573–1581

    Article  CAS  PubMed  Google Scholar 

  82. Nash KA, Andini N, Zhang Y, Brown-Elliott BA, Wallace RJ Jr (2006) Intrinsic resistance in rapidly growing mycobacteria. Antimicrob Agents Chemother 50:3476–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lee M-R, Sheng W-H, Hung C-C, Yu C-J, Lee L-N, Hsueh P-R (2016) Mycobacterium abscessus complex infections in humans. Emerg Infect Dis 21:1638–1646

    Google Scholar 

  84. Mycobacterium abscessus/John Hopkins ABX guide. https://www.hopkinsguides.com/hopkins/view/John-Hopkins-ABX-guide/540360/Mycobacterium-abscessus?=abscessus. Accessed 23 Mar 2019

  85. Steir M, Walsh M, Rosa R et al (2018) Mycobacterium abscessus complex infections: a retrospective cohort study. Open Forum Infect Dis 5(2):ofy022. https://doi.org/10.1093/ofid/ofy022

    Article  CAS  Google Scholar 

  86. Lai CC, Tam CK, Chou CH et al (2010) Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000-2008. Emerg Infect Dis 16:294–296

    Article  PubMed  PubMed Central  Google Scholar 

  87. Benwell JL, Wallace RJ Jr (2014) Mycobacterium abscessus challenges in diagnosis and treatment. Curr Opin Infect Dis 27:506–510

    Article  CAS  Google Scholar 

  88. Byrant JM, Grogono DM, Greaves D et al (2013) Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective study. Lancet 381:1551–1560

    Article  CAS  Google Scholar 

  89. Esther CR Jr, Esserman DA, Gilligan P et al (2010) Chronic Mycobacterium abscessus infection and lung decline in cystic fibrosis. J Cyst Fibros 9:117–123

    Article  PubMed  Google Scholar 

  90. Benwell JL, Wallace JL Jr (2014) Mycobacterium abscessus: challenges in diagnosis and treatment. Curr Opin Infect Dis 27:506–510

    Article  CAS  Google Scholar 

  91. Nathavitharana RR, Strnad L, Lederer PA, Shah M, Hurtada RM (2019) Top questions in the diagnosis and treatment of pulmonary M. abscessus disease. Open Forum Infect Dis 6:ofz221. https://doi.org/10.1093/ofid/ofz221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Koh WJ, Jeon K, Lee NY et al (2011) Clinical significance of differentiation of Mycobacterium massiliense from Mycobacterium abscessus. Am J Respir Crit Care Med 183:405–410

    Article  PubMed  Google Scholar 

  93. Choi GE, Shin SJ, Won CJ et al (2012) Macrolide treatment for Mycobacterium abscessus and Mycobacterium massiliense infection and inducible resistance. Am J Respir Crit Care Med 186:917–925

    Article  CAS  PubMed  Google Scholar 

  94. Park J, Cho J, Lee CH et al (2017) Progression and treatment outcomes of lung disease caused by Mycobacterium abscessus and Mycobacterium massiliense. Clin Infect Dis 64:301–308

    Article  CAS  PubMed  Google Scholar 

  95. Lee MR, Cheng A, Lee YC et al (2012) CNS infections caused by Mycobacterium abscessus complex: clinical features and antimicrobial susceptibilities of isolates. J Antimicrob Chemother 67(1):222–225

    Article  PubMed  CAS  Google Scholar 

  96. Pryjima M, Burian J, Kuchinski K, Thompson CJ (2017) Antagonism between front-line antibiotics clarithromycin and amikacin in the treatment of Mycobacteria abscessus infections is mediated by the whiB7 gene. Antimicrob Agents Chemother 61:e01353–e01317

    Google Scholar 

  97. Martiniano SL, Wagner BD, Levin A, Nick JA, Sagel SD, Daley CL (2017) Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest 152:800–809

    Article  PubMed  Google Scholar 

  98. Ryan K (2018) Mycobacteria abscesus: shapeshifter of the mycobacterial world. Front Microbiol 9:2642. https://doi.org/10.3389/fmicb.2018.02642

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ganapathy US, Dartois V, Dick T (2019) Repositioning rifamycins for Mycobacterial abscessus lung disease. Expert Opin Drug Discov 14:869–878. https://doi.org/10.1080/17460441.2019.1629414

    Article  CAS  Google Scholar 

  100. Philley JV, Wallace RJ Jr, Benwell JL et al (2015) Preliminary results of bedaquiline as salvage therapy for patients with nontuberculous mycobacterial lung disease. Chest 48:499–506

    Article  Google Scholar 

  101. Ferro BE, Srivastava S, Deshpande D, Pasipanodya JG, van Soolingen D, Mouton JW, van Ingen J, Gumbo T (2016) Failure of the amikacin, cefoxitin, and clarithromycin combination regimen for treating pulmonary Mycobacterium abscessus infection. Antimicrob Agents Chemother 60:6374–6376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pasipanodya JG, Ogbonna D, Ferro BE, Magombedze G, Srivastava S, Deshpande D, Gumbo T (2017) Systematic review and meta-analysis of the effect of chemotherapy on pulmonary Mycobacterium abscessus outcomes and disease recurrence. Antimicrob Agents Chemother 61(11):e01206-17. https://doi.org/10.1128/AAC.01206-17

    Article  PubMed  PubMed Central  Google Scholar 

  103. Koh WJ, Jeong BH, Kim SY et al (2017) Mycobacterial characteristics and treatment outcomes in Mycobacterium abscessus lung disease. Clin Infect Dis 64:309–316

    Article  CAS  PubMed  Google Scholar 

  104. Chen J, Zhao L, Mao Y et al (2019) Clinical efficacy and adverse effects of antibiotics used to treat Mycobacterium abscessus pulmonary disease. Front Microbiol 10:1997. https://doi.org/10.3389/fmicb.2019.01977/full

  105. Novosad SA, Beekman SWE, Polgreen PM, Macjey K, Winthrop K (2016) M. abscessus study team. Treatment of Mycobacterium abscessus infection. Emerg Infect Dis 22:511–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fukui S, Sekiya N, Takizawa Y et al (2015) Disseminated Mycobacterium abscessus infection following septic arthritis. A case report and review of the literature. Medicine 94(21):e861

    Article  PubMed  PubMed Central  Google Scholar 

  107. El Helopu G, Hachem R, viola GM, El Zakhem A, Chaftari AM, Jiang Y, Tarrand J, Raad II (2013) Management of rapidly growing mycobacterial bacteremia in cancer patients. Clin Infect Dis 56:843–846

    Article  Google Scholar 

  108. Lee M-R, Ko J-C, Liang S-K, Lee S-W, Yen DH-T, Hsueh P-R (2014) Bacteremia caused by Mycobacterium abscessus subsp. abscessus and M. abscessus subsp. bolletii: clinical features and susceptibilities of the isolates. Int J Antimicrob Agents 43:438–441

    Article  CAS  PubMed  Google Scholar 

  109. Jeong SH, Kim S-Y, Huh HJ et al (2017) Mycobacterial characteristics and treatment outcomes in extrapulmonary Mycobacterium abscessus complex infections. Int J Infect Dis 60:49–56

    Article  PubMed  Google Scholar 

  110. Tortoli E, Rindi L, Garcia MJ et al (2004) Proposal to elevate the genetic variant MAC-A, included in the Mycobacterium avium complex, to species rank as Mycobacterium chimaera sp. Nov. Int J Syst Evol Microbiol 54:1277–1285

    Article  CAS  PubMed  Google Scholar 

  111. Sax H, Bloemberg G, Hasse B et al (2015) Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis 61:67–75

    Article  PubMed  Google Scholar 

  112. Sommerstein R, Haase B, Marshall J, Sax H, Genoni M, Schegel M, Widner A, the Swiss Chimaera Taskforce (2018) Global health estimate of invasive Mycobacterium chimaera infections associated with heater-cooler devices in cardiac surgery. Emerg Infect Dis 24:576–578

    Article  PubMed  PubMed Central  Google Scholar 

  113. Schreiber PW, Sax H (2017) Mycobacterium chimaera infections associated with heater-cooler units in cardiac surgery. Curr Opin Infect Dis 30:388–394

    Article  PubMed  Google Scholar 

  114. Haller S, Holloer C, Jacobshagen A et al (2016) Contamination during production of heater-cooler units by Mycobacterium chimaera potential cause for invasive cardiovascular infections: results of an outbreak investigation in Germany, April 2015 to February 2016. Euro Surveill 21:30215

    Article  Google Scholar 

  115. Svensson E, Jensen ET, Rasmussen EM, Folkvardsen DR, Norman A, Lillebaek T (2017) Mycobacteria chimaera in heater-cooler units in Denmark related to isolates from the United States and United Kingdom. Emerg Infect Dis 23:507–509

    Article  PubMed  PubMed Central  Google Scholar 

  116. Marra AR, Diekema DJ, Edmond MB (2017) Mycobacterium chimaera infections associated with contaminated heater-cooler devices for cardiac surgery: outbreak management. Clin Infect Dis 65:669–674

    Article  PubMed  Google Scholar 

  117. Chaud M, Lamagni T, Kranzer K et al (2017) Insidious risk of severe Mycobacterium chimaera infection in cardiac surgery patients. Clin Infect Dis 64:335–342

    Article  Google Scholar 

  118. Becker SL, Schotthauser U, Shepherd H-J, Bais R, Trudzinski FC (2019) Epidemiology, clinical presentation, diagnosis and treatment of Mycobacterium chimaera. Pulmonologie 73(08):474–481. [In German with English abstract]. https://doi.org/10.1055/a-0872-8809

    Article  CAS  Google Scholar 

  119. Scriven JE, Scobie A, Verlander NQ et al (2018) Mycobacterium chimaera infection following cardiac surgery in the United Kingdom: clinical features and outcome of the first 30 cases. Clin Microbiol Infect 24(11):1164–1170. https://doi.org/10.1016/j.cmi.2018.04.027

    Article  CAS  PubMed  Google Scholar 

  120. Kasperbauer SH, Daley CL (2019) Mycobacterium chimaera infections related to the heater-cooler unit outbreak: a guide to diagnosis and management. Clin Infect Dis 68:1244–1247

    Article  PubMed  Google Scholar 

  121. Zozaya-Valdes E, Porter JL, Coventry J et al (2017) Target specific assay for rapid and quantitative detection of Mycobacterium chimaera DNA. J Clin Microbiol 55:1847–1856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nomura J, Rieg G, Bluestone G et al (2019) Rapid detection of invasive Mycobacterium chimaera disease via a novel plasma-based next-generation sequencing test. BMC Infect Dis 19:371

    Article  PubMed  PubMed Central  Google Scholar 

  123. Mok S, Hannan MM, Nolke L et al (2019) Antimicrobial susceptibility of clinical and environmental Mycobacterium chimaera isolates. Antimicrob Agents Chemother 63:e00755–e00719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Garvey MI, Ashford R, Bradley CW et al (2016) Decontamination of heater-cooler units associated with contamination by atypical mycobacteria. J Hosp Infect 93:229–234

    Article  CAS  PubMed  Google Scholar 

  125. Gotting T, Klassen S, Jonas D et al (2016) Heater-cooler units: contamination of crucial devices in cardiothoracic surgery. J Hosp Infect 93:223–228

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2020). Emerging and Difficult to Treat Nontuberculous Mycobacteria Infections. In: Current Trends and Concerns in Infectious Diseases. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-36966-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36966-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36965-1

  • Online ISBN: 978-3-030-36966-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics