Skip to main content

Issues in Therapeutics of Some Bacterial Infections: Vancomycin Use, Osteomyelitis, Endocarditis, and Staphylococcus aureus Bacteremia

  • Chapter
  • First Online:
Current Trends and Concerns in Infectious Diseases

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

  • 735 Accesses

Abstract

There are several contentious issues in the management of some bacterial infections where treatment guidelines and practice are based on scant clinical or in vitro data without proof by randomized trials. Among these that are covered in this chapter are the therapeutic issues in: (1) vancomycin dosing to obtain AUC24/MIC ≥400 and trough concentration 15–20 μg/mL for optimal efficacy; (2) prolonged intravenous antibiotic[s] for osteomyelitis; (3) the need for prolonged intravenous therapy for Staphylococcus aureus bacteremia; and (4) the long-held view and guidelines of the absolute need for 4–6 weeks intravenous antibiotics for bacterial endocarditis. This chapter reviews the evidence that support or fail to confirm the basis of current recommendations and new data from randomized trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubenstein E, Keynan Y (2014) Vancomycin revisited---60 years later. Front Public Health 2:217. https://doi.org/10.3389/fpubh.2014.00217

    Article  Google Scholar 

  2. Kim SH, Kim KH, Kim HB et al (2008) Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 52:192–197

    Article  CAS  PubMed  Google Scholar 

  3. Stryjiewski ME, Szczech LA, Benjamin DK et al (2007) Use of vancomycin or first-generation cephalosporin for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis 44:190–196

    Article  Google Scholar 

  4. Khatib R, Johnson LB, Fakih MG et al (2006) Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand J Infect Dis 38:7–14

    Article  PubMed  Google Scholar 

  5. Britt NS, Patel N, Shireman TI, El Atrouni WI, Harvat RT, Steed ME (2017) Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteremia. J Antimicrob Chemother 72:535–542

    Article  CAS  PubMed  Google Scholar 

  6. Moellering RC Jr (2006) Vancomycin: a 50-year reassessment. Clin Infect Dis 42(Suppl 1):S2–S4

    Google Scholar 

  7. Rybak MJ, Albrecht LM, Boilke SC, Chandrasekar PH (1990) Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 25:679–687

    Article  CAS  PubMed  Google Scholar 

  8. Lowdin E, Odenholt I, Cars O (1998) In vitro studies of pharmacodynamics properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 42:2739–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Craig WA, Ebert S (1991) Kinetics and regrowth of bacteria in vitro: a review. Scand J Infect Dis 74(Suppl):S15–S22

    Google Scholar 

  10. Levison ME, Levison JH (2009) Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin N Am 23:791. https://doi.org/10.1016/jdc.2009.06.008

    Article  Google Scholar 

  11. Eagle H (1948) A paradoxical zone phenomenon in the bactericidal action of penicillin in vitro. Science 107:10744–10745

    Article  Google Scholar 

  12. Jarrad AM, Blastkovich MAT, Prasetyoputri A, Karoli T, Hansford KA, Cooper MA (2018) Detection and investigation of Eagle effect resistance to vancomycin in Clostridium difficile with an ATP-bioluminescence assay. Front Microbiol 9:1420. https://doi.org/10.3389/fmicb.2018.01420

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lamp KC, Rybak MJ, Bailey EM, Kaatz GW (1992) In vitro pharmacodynamic effect of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin. Antimicrob Agents Chemother 36:2709–2714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. SaKoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr, Eliopoulos GM (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Hal SJ, Lodise TP, Paterson DL (2012) The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis 54:755–771

    Article  PubMed  CAS  Google Scholar 

  16. Marvos MN, Tansarli GS, Vardakas KZ, Rafailidis PI, Karageorgopoulus DE, Faragas ME (2012) Impact of vancomycin minimum inhibitory concentration on clinical outcomes of patients with vancomycin-susceptible Staphylococcus aureus infections. Int J Antimicrob Agents 40:496–509

    Article  CAS  Google Scholar 

  17. Jacob JT, DiazGranados CA (2013) High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections. Int J Infect Dis 17:e93–e100

    Article  CAS  PubMed  Google Scholar 

  18. Kalil AC, Van Schooneveld TC, Fey PD, Rupp ME (2014) Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections. A systematic review and meta-analysis. JAMA 312:1552–1564

    Article  PubMed  CAS  Google Scholar 

  19. Song K-H, Kim M, Kim CJ et al (2017) Impact of vancomycin MIC on treatment outcomes in invasive Staphylococcus aureus infections. Antimicrob Agents Chemother 61:e01845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adults: a consensus review of the American Society of Health-System Pharmacists, the infectious disease Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98

    Article  CAS  PubMed  Google Scholar 

  21. Elyasi S, Khalili H (2016) Vancomycin dosing nomograms targeting high serum trough levels in different populations: pros and cons. Eur J Clin Pharmacol 72:777–788

    Article  PubMed  CAS  Google Scholar 

  22. Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55

    Article  PubMed  Google Scholar 

  23. Rybak MJ (2006) Pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42(Suppl 1):S35–S39

    Article  CAS  PubMed  Google Scholar 

  24. Hale CM, Seabury RW, Steele JM, Darko W, Miller CD (2017) Are vancomycin trough concentrations of 15 to 20 mg/L associated with increased attainment of an AUC/MIC ≥400 in patients with presumed MRSA infections? J Pharm Pract 30:32935

    Google Scholar 

  25. Tkachuk S, Collins K, Ensom MHH (2018) The relationship between vancomycin trough concentrations and AUC/MIC ratios in pediatric patients: a qualitative review. Pediatr Drugs 20:153–164

    Article  Google Scholar 

  26. Castaneda X, Garcia-de-la-Maria C, Gasch O et al (2017) AUC/MIC pharmacodynamics target is not a good predictor of vancomycin efficacy in methicillin-resistant Staphylococcus aureus experimental endocarditis. Antimicrob Agents Chemother 61:e02486

    Article  PubMed  PubMed Central  Google Scholar 

  27. Steinmetz T, Eliakim-Raz N, Goldberg E, Leibovici L, Yahav D (2015) Association of vancomycin serum concentration with efficacy in patients with MRSA infections: a systematic review and meta-analysis. Clin Microbiol Infect 21:665–673

    Article  CAS  PubMed  Google Scholar 

  28. Meng L, Fang Y, Chen Y, Zhu H, Long R (2015) High versus low vancomycin serum regimen for gram-positive infections: a meta-analysis. J Chemother 27:213–220

    Article  CAS  PubMed  Google Scholar 

  29. Prybylski JP (2015) Vancomycin trough concentration as a predictor of clinical outcomes in patients with Staphylococcus aureus bacteremia: a meta-analysis of observational studies. Pharmacotherapy 35:889–898

    Article  CAS  PubMed  Google Scholar 

  30. Song K-H, Kim BN, Kim H-S et al (2015) Impact of area under the concentration-time curve to minimum inhibitory concentration ratio on vancomycin treatment outcomes in methicillin Staphylococcus aureus bacteremia. Int J Antimicrob Agents 46:689–695

    Article  CAS  PubMed  Google Scholar 

  31. Liang X, Fan Y, Yang M et al (2018) A prospective multicenter clinical observational study on vancomycin efficiency and safety with therapeutic drug monitoring. Clin Infect Dis 67(S2):S249–S255

    Article  CAS  PubMed  Google Scholar 

  32. Shen K, Yang M, Fan Y et al (2018) Model-based evaluation of the clinical microbiological efficacy of vancomycin: a prospective study of Chinese adult in-house patients. Clin Infect Dis 67(S2):S256–S262

    Article  CAS  PubMed  Google Scholar 

  33. Barriere SL, Stryjewski ME, Corey GR, Genter FC, Rubinstein E (2014) Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to Staphylococcus aureus: a retrospective, post-hoc, subgroup analysis of the phase 3 ATTAIN studies. BMC Infect Dis 14:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Cao G, Liang X, Zhang J et al (2015) Vancomycin serum trough concentration vs. clinical outcome in patients with gram-positive infection: a retrospective analysis. J Clin Pharm Ther 40:640–644

    Article  CAS  PubMed  Google Scholar 

  35. McNeil JC, Kaplan SL, Vallejo JG (2017) The influence of the route of antibiotic administration, methicillin susceptibility, vancomycin duration and serum trough concentration on outcomes of pediatric Staphylococcus aureus bacteremic osteoarticular infection. Pediatr Infect Dis J 36:572–577

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hsu AJ, Hamdy RF, Huang Y, Olson JA, Ghobrial GJS, Hersh AI, Tamma PD (2018) Association between vancomycin trough concentrations and duration of methicillin-resistant Staphylococcus aureus bacteremia in children. J Pediatr Infect Dis 7:338–341

    Google Scholar 

  37. McNeil JC, Kok EY, Forbes AR et al (2016) Healthcare-associated Staphylococcus aureus bacteremia in children: evidence for reverse vancomycin creep and impact of vancomycin trough values on outcome. Pediatr Infect Dis J 35:263–268

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yoo RN, Kim SH, Lee J (2017) Impact of initial vancomycin trough concentration on clinical and microbiological outcomes of methicillin-resistant Staphylococcus aureus bacteremia in children. J Korean Med Sci 32:22–28

    Article  CAS  PubMed  Google Scholar 

  39. Dong M-H, Wang J-W, Wu Y, Chen B-Y, Yu M, Wen A-D (2015) Evaluation of body weight-based vancomycin therapy and the incidence of nephrotoxicity: a retrospective study in northwest of China. Int J Infect Dis 37:125–128

    Article  CAS  PubMed  Google Scholar 

  40. Filippone EJ, Kraft WK, Farber JL (2017) The nephrotoxicity of vancomycin. Clin Pharmacol Ther 102(3):459–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jeffres MN (2017) The whole price of vancomycin: toxicities, troughs, and time. Drugs 77:1143–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hammond DA, Smith MN, Li C, Hayes SM, Lusardi K, Bookstaver PB (2017) Systematic review and meta-analysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam. Clin Infect Dis 64:666–674

    CAS  PubMed  Google Scholar 

  43. Horey A, Mergenhagen K, Mattappallil A (2012) The relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: a retrospective analysis. Ann Pharmacother 46:1477–1483

    Article  PubMed  Google Scholar 

  44. Wong-Beringer A, Joo J, Tse E, Beringer P (2011) Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents 37:95–101

    Article  CAS  PubMed  Google Scholar 

  45. Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A (2012) Vancomycin-induced nephrotoxicity: mechanisms, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 68:1243–1255

    Article  CAS  PubMed  Google Scholar 

  46. Van Hal S, Paterson D, Lodise T (2013) Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother 57:734–744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370

    Article  PubMed  Google Scholar 

  48. Chavada R, Ghosh N, Sandaradura I, Maley M, Van Hal SJ (2017) Establishment of an AUC-24 threshold for nephrotoxicity is a step towards individualized vancomycin dosing for methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 61:e02535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neely MN, Kato L, Youn G et al (2018) A prospective trial on the use of trough concentration versus area under the curve [AUC] to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother 62(2):e02042-17. https://doi.org/10.1128/AAC.02042-17

    Article  PubMed  PubMed Central  Google Scholar 

  50. Truong J, Veillette JJ, Forland SC (2018) Outcomes of vancomycin plus β-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 62(2):e01554-17. https://doi.org/10.1128/AAC.01554-17

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jung YJ, Koph Y, Hong SB et al (2010) Effect of vancomycin plus rifampin in the treatment of nosocomial methicillin-resistant Staphylococcus aureus pneumonia. Crit Care Med 38:175–180

    Article  CAS  PubMed  Google Scholar 

  52. Thwaites GE, Scarborough M, Szubert A et al (2018) Adjunctive rifampin for Staphylococcus aureus bacteremia [ARREST]: a multicentre, randomized, double-blind, placebo-controlled trial. Lancet 391:668–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Leonard SN (2012) Synergy between vancomycin and nafcillin against Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamics model. PLoS One 7:e42103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hagihara M, Wiskirchen DE, Kuti JL, Nicolau DP (2012) In vitro pharmacodynamics of vancomycin and cefazolin alone and in combination against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 56:202–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis JS, Hal SV, Tong SY (2015) Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Semin Respir Crit Care Med 36:3–16

    Article  CAS  PubMed  Google Scholar 

  56. Dilworth TJ, Ibrahim O, Hall P, Silwinski J, Walraven C, Mercier R-C (2014) β-Lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone. Antimicrob Agents Chemother 2014(58):102–109

    Article  CAS  Google Scholar 

  57. Truong J, Veillette JJ, Fortland SC (2018) Outcomes of vancomycin plus a β-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 62:e001554-17

    Google Scholar 

  58. Davis J, Sud A, O’Sullivan MVN et al (2016) Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis 62:173–180

    Article  CAS  PubMed  Google Scholar 

  59. Blyth MJR, Kincaid R, Craigen M, Bennet G (2001) The changing epidemiology of acute and subacute hematogenous osteomyelitis in children. J Bone Joint Surg (Br) 83:83–102

    Article  Google Scholar 

  60. Peltola H, Unkila-Kallio L, Kallio MJ (1997) Simplified treatment of acute staphylococcal osteomyelitis of childhood. The Finnish Study Group. Pediatrics 99:846–850

    Article  CAS  PubMed  Google Scholar 

  61. Peltola H, Paakkonen M, Kallio P, Kallio MJ (2010) Short- versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: prospective, randomized trial on 131 culture-positive cases. Pediatr Infect Dis J 29:1123–1128

    Article  PubMed  Google Scholar 

  62. Le Saux N, Howard A, Barrowman NJ, Gaboury I, Samson M, Moher D (2002) Shorter courses of parenteral antibiotic therapy do not appear to influence response rates for children with acute hematogenous osteomyelitis: a systematic review. BMC Infect Dis 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zaoutis T, Localio AR, Leckerman K, Saddlemiore S, Bertoch D, Keren R (2009) Prolonged intravenous versus early transition to oral antimicrobial therapy for acute osteomyelitis in children. Pediatrics 123:636–642

    Article  PubMed  Google Scholar 

  64. Keren R, Shah SS, Srivastava R et al (2015) Comparative effectiveness of intravenous vs oral antibiotics for post-discharge treatment of acute osteomyelitis in children. JAMA Pediatr 169:120–128

    Article  PubMed  Google Scholar 

  65. Dartnell J, Ramachandran M, Katchburian M (2012) Hematogenous acute and subacute pediatric osteomyelitis: a systematic review of the literature. J Bone Joint Surg Br 94:584–595

    Article  CAS  PubMed  Google Scholar 

  66. Batchelder N, So TY (2016) Transitioning antimicrobials from intravenous to oral in pediatric acute uncomplicated osteomyelitis. World J Clin Pediatr 5:224–250

    Article  Google Scholar 

  67. Waldvogel FA, Medoff G, Swartz MN (1970) Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects [first of three parts]. N Engl J Med 282:198–206

    Article  CAS  PubMed  Google Scholar 

  68. Thabit AK, Fatani DF, Bamakhrama MS, Barnawi OA, Basudan LO, Alhejaili SF (2019) Antibiotic penetration into bone and joints: an updated review. Int J Infect Dis 81:128–136

    Article  CAS  PubMed  Google Scholar 

  69. Li HK, Agweyu A, English M, Bejon P (2015) An unsupported preference for intravenous antibiotics. PLoS Med 12(5):e1001825

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Stengel D, Bauwens K, Sehoul J, Ekkernkamp A, Porzsolt F (2001) Systematic review and meta-analysis of antibiotic therapy for bone and joint infections. Lancet Infect Dis 1:175–188

    Article  CAS  PubMed  Google Scholar 

  71. Lazzarinni L, Lipsky BA, Mader JT (2005) Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials? Int J Infect Dis 9:127–138

    Article  CAS  Google Scholar 

  72. Zimmerli W (2010) Vertebral osteomyelitis. N Engl J Med 362:1022–1029

    Article  CAS  PubMed  Google Scholar 

  73. Spellberg B, Lipsky BA (2012) Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis 54:393–407

    Article  PubMed  Google Scholar 

  74. Zimmerli W, Widner AF, Blatter M, Frei R, Ochsner PE (1998) Foreign-body infection [FB] study group role of rifampin for treatment of orthopedic implanted related staphylococcal infections: a randomized controlled trial. JAMA 279:1537–1541

    Article  CAS  PubMed  Google Scholar 

  75. Conterno LO, Turchi MD (2013) Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst Rev (9):CD004439. https://doi.org/10.1002/14651858.CD004439.pub3

  76. Embil JM, Rose G, Trepman E et al (2006) Oral antimicrobial therapy for diabetic foot osteomyelitis. Foot Ankle Int 27:1–779

    Article  Google Scholar 

  77. Lipsky BA, Berendt AR, Cornia PB et al (2012) 2012 Infectious Disease Society of America clinical practice guidelines for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54:132–173

    Article  Google Scholar 

  78. Tone A, Nguyen S, Devemy F et al (2015) Six-week versus twelve-week antibiotic therapy for nonsurgically treated diabetic foot osteomyelitis: a multicenter open-label controlled randomized study. Diabetes Care 38:302–307

    Article  PubMed  Google Scholar 

  79. Lipsky BA, Itani K, Noprden C, Linezolid Diabetic Foot Infection Study Group (2014) Treating foot infections in diabetes patients: a randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin Infect Dis 69:309–322

    Google Scholar 

  80. Li HK, Rombach I, Zambellas R et al (2019) Oral versus intravenous antibiotics for bone and joint infections. N Engl J Med 380:425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fernandez-Gerlinger M-P, Arvieu R, Lebeaux D, Rouis K, Guigui P, Minard J-L, Bouyer B (2019) Successful 6-week antibiotic treatment for early surgical site infections in spinal surgery. Clin Infect Dis 68:856–861

    Article  Google Scholar 

  82. Chausade H, Uckay I, Vaugnat A, Druon J, Gra G, Rosset P, Lipsky BA, Bernard L (2017) Antibiotic therapy duration for prosthetic joint infections treated by debridement and implant retention [DAIR]: similar long-term remission for 6 weeks as compared to 12 weeks. Int J Infect Dis 63:37–42

    Article  Google Scholar 

  83. Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG (2008) Adjunctive use of rifampin for treatment of Staphylococcus aureus infections. A systematic review of the literature. Arch Intern Med 168:805–819

    Article  CAS  PubMed  Google Scholar 

  84. Baciewicz AM, Chrisman CR, Finch CK, Self TH (2008) Update on rifampin and rifabutin drug interactions. Am J Med Sci 335:126–136

    Article  PubMed  Google Scholar 

  85. Zimmerli W, Sendi P (2019) Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and orthopedic-device-related infections. Antimicrob Agents Chemother 63:e01746

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lora-Tamayo J, Murillo O, Iribarren JA et al (2013) A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis 56:182–194

    Article  PubMed  Google Scholar 

  87. Riedel DJ, Weekes E, Forrest GN (2008) Addition of rifampin to standard therapy for treatment of native valve endocarditis caused by Staphylococcus aureus. Antimicrob Agents Chemother 52:2463–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guerillot R, Goncalves da Silva A, Monk I et al (2018) Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus. mSphere 3(1):e00550-17. https://doi.org/10.1128/mSphere.00550-17

    Article  PubMed  PubMed Central  Google Scholar 

  89. Klein S, Nurjadi D, Eigenbrod T, Bode KA (2016) Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospital in Germany: is there a role for fusidic acid? Int J Antimicrob Agents 47:155–157

    Article  CAS  PubMed  Google Scholar 

  90. Sendzik J, Shakibaei M, Schaffer-Korting M, Stahlmann R (2005) Fluoroquinolones cause changes in extracellular matrix, signaling proteins, metalloproteinases and caspase-3 in cultured human tendon cells. Toxicology 212:24–36

    Article  CAS  PubMed  Google Scholar 

  91. Corps AN, Harral RL, Curry VA, Fenwick SA, Hazleman BL, Riley G (2002) Ciprofloxacin enhances stimulation of matrix metalloproteinase 3 expression by interleukin-1β in human tendon-derived cells. A potential mechanism of fluoroquinolone-induced tendinopathy. Arthritis Rheum 46:3034–3040

    Article  CAS  PubMed  Google Scholar 

  92. Osmon DR, Berbari EF, Berendt AR et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e5

    Article  PubMed  Google Scholar 

  93. MacGregor RR, Graziani AL (1997) Oral administration of antibiotics: a rational alternative to the parenteral route. Clin Infect Dis 24:457–467

    Article  CAS  PubMed  Google Scholar 

  94. Smith JA, Pham PA, Hsu AJ. John Hopkins ABX guide. https://www.hopkinsguide.com/hopkins/view/John-Hopkins-ABX-Guide/540138/all/Clo. Accessed 4 Mar 2019

  95. Uhlemann ACV, Hafer C, Miko BA et al (2013) Emergence of sequence type 398 as a community- and healthcare-associated methicillin susceptible Staphylococcus aureus in northwestern Manhattan. Clin Infect Dis 57:700–703

    Article  PubMed  PubMed Central  Google Scholar 

  96. Paul M, Bishara J, Yahav D et al (2015) Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by methicillin resistant Staphylococcus aureus: randomized controlled trial. BMJ 350:h2219

    Article  PubMed  PubMed Central  Google Scholar 

  97. Fralick M, MacDonald EM, Gomes T, Canadian Drug Safety and Effectiveness Research Network et al (2014) Co-trimoxazole and sudden death in patients receiving renin-angiotensin system: population based study. BMJ 3491:g6196

    Article  CAS  Google Scholar 

  98. Antoniou T, Holpland S, MacDonald EM, Gopmes T, Mamdani MM, Juurlink DN, Canadian Drug Safety and Effectiveness Network (2015) Trimethoprim-sulfamethoxazole and risk of sudden death among patients taking spironolactone. CMAJ 187:E138

    Article  PubMed  PubMed Central  Google Scholar 

  99. Fernandes P (2016) Fusidic acid: a bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med 6:a025437. https://doi.org/10.1101/cshperspect.a025437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Christiansen K (1999) Fusidic acid adverse drug reactions. Int J Antimicrob Agents 12(Suppl 2):S3–S9

    Article  CAS  PubMed  Google Scholar 

  101. Holmes NE, Charles PGP (2009) Safety and efficacy review of doxycycline. Clin Med Ther 1:471–482. http://www.la-press.com

    CAS  Google Scholar 

  102. Yuk JH, Dignani MC, Harris RL, Bradshaw MW, Wiliams TW Jr (1991) Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis 13:1023–1024

    Article  CAS  PubMed  Google Scholar 

  103. Ruthe JJ, Menon A (2007) Tetracyclines as an oral option for patients with community onset skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 51:3298–3303

    Article  CAS  Google Scholar 

  104. Jones CH, Tuckman M, Howe AYM, Orlowski M, Mullen S, Chan K, Bradford PA (2006) Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother 50:505–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Kresken M, Becker K, Selfert H, Leitner E, Korber-Irrgang B, von Eiff C, Loschmann PA, Study Group (2011) Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against Gram-positive and Gram-negative organisms, including multi-resistant pathogens, in Germany. Eur J Clin Microbiol Infect Dis 30:1095–1103

    Article  CAS  PubMed  Google Scholar 

  106. Stepensky D, Kleinberg L, Hoffmen A (2003) Bone as an effect compartment. Models for uptake and release of drugs. Clin Pharmacokinet 42:863–881

    Article  CAS  PubMed  Google Scholar 

  107. Lee HM, Ciano SG, Tiiter G, Ryan ME, Komanoff E, Golub LM (2004) Subantimicrobial dose of doxycycline efficacy as a matrix metalloproteinase inhibitor in chronic periodontitis patients is enhanced when combined with non-steroidal anti-inflammatory drugs. J Periodontal 75:453–463

    Article  CAS  Google Scholar 

  108. Greenwald RA, Moak SA, Ramamurthy NS, Golub LM (1992) Tetracyclines suppress metalloproteionase activity in adjuvant arthritis and in combination with flurbiprofen, ameliorate bone damage. J Rheumatol 19:927–938

    CAS  PubMed  Google Scholar 

  109. Golib LM, Greenwald RA, Ramamurthy NS, McNamara TF, Rifkin BR (1991) Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for a family of drugs. Crit Rev Oral Biol Med 2:297–321

    Article  Google Scholar 

  110. Sasaki T, Kaneko H, Ramamurthy NS, Golub LM (1991) Tetracycline administration restores osteoblast structure and function during experimental diabetes. Anat Rec 231:25–34

    Article  CAS  PubMed  Google Scholar 

  111. Rifkin BR, Vermillo AT, Golub LM, Ramamurthy NS (1994) Modulation of bone resorption by tetracyclines. Ann N Y Acad Sci 732:165–180

    Article  CAS  PubMed  Google Scholar 

  112. Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM (1997) Administration of systemic matrix metalloproteinase inhibitors maintain bone mechanical integrity in adjuvant arthritis. J Rheumatol 24:1324–1331

    CAS  PubMed  Google Scholar 

  113. Zhang Z, Nix CA, Ercan UK, Gerstenhaber JA, Joshi SG, Zhong Y (2014) Calcium binding-mediated sustained release of minocycline from hydrophilic multilayer coatings targeting infection and inflammation. PLoS One 9:e84360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Carris NW, Pardo J, Montero J, Shaeer KM (2015) Minocycline as a substitute for doxycycline in targeted scenarios: a systematic review. Open Forum Infect Dis 2:ofv178. https://doi.org/10.1093/ofid/ofv178

    Article  PubMed  PubMed Central  Google Scholar 

  115. Tariq R, Cho J, Kapoopr S, Orenstein R, Singh S, Ds P, Khanna S (2018) Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and meta-analysis. Clin Infect Dis 66:514–522

    Article  CAS  PubMed  Google Scholar 

  116. Pant S, Patel NJ, Deshmukh A et al (2015) Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. J Am Coll Cardiol 65:2070–2076

    Article  PubMed  Google Scholar 

  117. Wurcel AG, Anderson JE, Chui KK et al (2016) Increasing infectious endocarditis admissions among young people who inject drugs. Open Forum Infect Dis 3(3):ofw157. https://doi.org/10.1093/ofid/ofw157

    Article  PubMed  PubMed Central  Google Scholar 

  118. Wang A, Gaca JG, Chiu VH (2018) Management considerations in infective endocarditis. JAMA 320:72–83

    Article  PubMed  Google Scholar 

  119. Heldman AW, Hartert TV, Ray SC et al (1996) Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med 101:68–76

    Article  CAS  PubMed  Google Scholar 

  120. Stamboulian D, Bonvehi P, Arevalo C, Bologna R, Cassetti I, Scilingo V, Efron E (1991) Antibiotic management of outpatients with endocarditis due to penicillin-susceptible streptococci. Rev Infect Dis 14(Suppl 2):S160–S163

    Article  Google Scholar 

  121. Al-Omari A, Cameron DW, Lewe C, Corrales-Medina VF (2014) Oral antibiotic therapy for the treatment of infective endocarditis: a systemic review. BMC Infect Dis 14:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Mzabi A, Kereis S, Richaud C, Podglajen I, Fernandez-Gerlinger MP, Mainardi JL (2016) Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non-severely ill patients. Clin Microbiol Infect 22:607

    Article  CAS  PubMed  Google Scholar 

  123. Iversen K, Ihlemann N, Gill SU et al (2019) Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med 380:415–424

    Article  CAS  PubMed  Google Scholar 

  124. Bundgaard H, Ihlemann N, Gill SU et al (2019) Long-term outcomes of partial oral treatment of endocarditis. N Engl J Med 380:1373–1374

    Article  PubMed  Google Scholar 

  125. Frimodt-Moller N, Espersen F, Skinhoi JP, Rosdahl VT (1997) Epidemiology of Staphylococcus aureus bacteremia in Denmark from 1957 to 1990. Clin Microbiol Infect 3:297–305

    Article  PubMed  Google Scholar 

  126. Laupland KB, Lytikainen O, Sogaard M et al (2013) The changing epidemiology of Staphylococcus aureus blood-steam infection: a multinational population-based surveillance study. Clin Microbiol Infect 19:465–471

    Article  CAS  PubMed  Google Scholar 

  127. El Atrouni WI, Knoll BM, Lahr BD et al (2009) Temporal trends in Staphylococcus aureus bacteremia in Olmsted County, Minnesota, 1998 to 2005. Clin Infect Dis 49:e130

    Article  PubMed  Google Scholar 

  128. van Hal SJ, Jensen SO, Vaska VL et al (2012) Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 25:362–386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Cosgrove SE, Sakoulas G, Perencevich EN et al (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis 36:53–59

    Article  PubMed  Google Scholar 

  130. Le Moing V, Alla F, Doco-Lecompte T et al (2015) Staphylococcus aureus bloodstream infection and endocarditis—a prospective cohort study. PLoS One 10(5):e0127385. https://doi.org/10.1371/journal.pone.0127385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bassetti M, Peghin M, Trecarichi EM et al (2017) Characteristics of Staphylococcus aureus bacteremia and predictors of early and late mortality. PLoS One 12(2):e0170236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Kaasch AJ, Barlow G, Edgeworth JD et al (2014) Staphylococcus aureus blood-steam infection: a pooled analysis of five prospective, observational studies. J Infect 68:242–251

    Article  PubMed  Google Scholar 

  133. Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the infectious disease society of America for the treatment of methicillin resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18–e55

    Article  PubMed  Google Scholar 

  134. Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection. 2009 update by the infectious diseases society of America. Clin Infect Dis 49:1–45

    Article  CAS  PubMed  Google Scholar 

  135. Fowler VG Jr, Olsen MK, Corey R et al (2003) Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med 163:2066–2072

    Article  PubMed  Google Scholar 

  136. Heriot GS, Cronin K, SYC T, Cheng AC, Liew D (2017) Criteria for identifying patients with Staphylococcus aureus bacteremia who are at low risk of endocarditis: a systematic review. Open Forum Infect Dis 4(4):ofx261. https://doi.org/10.1093/ofid/ofx261

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bai AD, Agarwal A, Steinberg M et al (2017) Clinical predictors and clinical prediction rules to estimate initial patient risk for infective endocarditis in Staphylococcus aureus bacteremia: a systematic review and meta-analysis. Clin Microbiol Infect 23:900–906

    Article  CAS  PubMed  Google Scholar 

  138. Palraj BR, Baddour LM, Hess EP, Steckelberg JM, Wilson WR, Lahr BD, Sohail MR (2015) Predicting risk of endocarditis using a clinical tool [PREDICT]: scoring system to guide use of echocardiography in the management of Staphylococcus aureus bacteremia. Clin Infect Dis 61:18–28

    Article  PubMed  PubMed Central  Google Scholar 

  139. Holland TL, Arnold C, Fowler VG Jr (2014) Clinical management of Staphylococcus aureus bacteremia. A review. JAMA 312:1330–1341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Showler A, Burry L, Bai AD et al (2015) Use of transthoracic echocardiography of low-risk Staphylococcus aureus bacteremia. JACC Cardiovasc Imaging 8:924–931

    Article  PubMed  Google Scholar 

  141. Jernigan JA, Farr BM (1993) Short-course therapy of catheter-related Staphylococcus aureus bacteremia: a meta-analysis. Ann Intern Med 119:304–311

    Article  CAS  PubMed  Google Scholar 

  142. Chong YP, Moon SM, Bang KM et al (2013) Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: analysis of a prospective observational cohort study. Antimicrob Agents Chemother 57:1150–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Khatib R, Riederer K, Saeed S, Johnson LB, Fakih MG, Sharma M, Tabriz MS, Khosrovaneh A (2005) Time to positivity in Staphylococcus aureus: possible correlation with the source and outcome of infection. Clin Infect Dis 41:594–598

    Article  PubMed  Google Scholar 

  144. Habib G, Badano L, Tribouilloy C, Vilacosta I, Zamorano JL (2010) Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr 11:202–219

    Article  PubMed  Google Scholar 

  145. Benfield T, Thorlacius-Ussing L. Seven versus fourteen days of treatment in uncomplicated Staphylococcus aureus bacteremia [SAB7]. Clinical Trials.gov. https://clinicaltrials.gov/ct2/show/NCT0351146

  146. Liu C, Strnad L, Beedkmann S, Polgreen PM, Chambers HF (2019) Clinical practice variation among adult infectious disease physicians in the management of Staphylococcus aureus bacteremia. Clin Infect Dis 69(3):530–533. https://doi.org/10.1093/cid/ciy1144

    Article  PubMed  PubMed Central  Google Scholar 

  147. McDanel JS, Roghmann MC, Perenevich EN et al (2017) Comparative effe3ctiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: A National Cohort Study. Clin Infect Dis 65:100–6

    Article  PubMed  Google Scholar 

  148. Loubet P, Burdet C, Vindrios W et al (2018) Cefazolin versus anti-stphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bacteremia: a narrative review. Clin Microbiol Infect 24:125–32

    Article  CAS  PubMed  Google Scholar 

  149. Burdet C, Loubet P, Le Moing V et al (2018) Efficacy of cloxacillin versus cefazol;in for methicillin-susceptible Staphylococcus aureus bacteremia [CloCeBa]: study protocol for a randomized, controlled, non-inferiority trial. BMJ Open 8: e023151

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fong, I.W. (2020). Issues in Therapeutics of Some Bacterial Infections: Vancomycin Use, Osteomyelitis, Endocarditis, and Staphylococcus aureus Bacteremia. In: Current Trends and Concerns in Infectious Diseases. Emerging Infectious Diseases of the 21st Century. Springer, Cham. https://doi.org/10.1007/978-3-030-36966-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36966-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36965-1

  • Online ISBN: 978-3-030-36966-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics