Skip to main content

TH Treatment in HF

  • Chapter
  • First Online:
  • 420 Accesses

Abstract

A large burden of scientific evidences showed the negative impact of mild forms of dysthyroidism on cardiac histology, morphology, metabolism and function. These deleterious effects have been largely studied experimentally in models of heart failure, highlighting a potential role in the progression of the disease. In the clinical setting, low triiodothyronine syndrome has the higher incidence of mild dysthyroidism, followed by subclinical hypothyroidism. They have been associated to a worse clinical status and a worse prognosis. However, there are contrasting data on their true clinical impact, and thus, actually it is not clear to treat patients with heart failure and abnormal thyroid metabolic patterns in order to establish euthyroidism. In this chapter, several aspects of thyroid system in heart failure are discussed: 1) its pathophysiological implication; 2) its role in the complex and intermingled mechanisms of cardioprotection; 3) the clinical and prognostic evidences; 4) the initial clinical experience of thyroid replacement therapy in heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning. Circ Res. 2015;116:674–99. https://doi.org/10.1161/CIRCRESAHA.116.305348. PMID: 25677517.

    Article  PubMed  CAS  Google Scholar 

  2. Pingitore A, Nicolini G, Kusmic C, Iervasi G, Grigolini P, Forini F. Cardioprotection and thyroid hormones. Heart Fail Rev. 2016;21(4):391–9.

    Article  PubMed  CAS  Google Scholar 

  3. West BJ, Geneston EL, Grigolini P. Maximizing information exchange between complex networks. Phys Rep. 2008;468:1–99. https://doi.org/10.1016/j.physrep.2008.06.003.

    Article  Google Scholar 

  4. Baig MK, Mahon N, McKenna WJ, et al. The pathophysiology of advanced heart failure. Am Heart J. 1998;135:S216–30.

    Article  PubMed  CAS  Google Scholar 

  5. Triposkiadis FK, Skoularigis J. Prevalence and importance of comorbidities in patients with heart failure. Curr Heart Fail Rep. 2012;9:354–62.

    Article  PubMed  Google Scholar 

  6. Lee CS, Chien CV, Bidwell JT, et al. Comorbidity profiles and inpatient outcomes during hospitalization for heart failure: an analysis of the U.S. Nationwide inpatient sample. BMC Cardiovasc Disord. 2014;14:73.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pingitore A, Iervasi G. Triiodothyronine (T3) effects on cardiovascular system in patients with heart failure. Recent Pat Cardiovasc Drug Discov. 2008;3:19–27.

    Article  PubMed  CAS  Google Scholar 

  8. McEwen BS, Stellar E. Stress and the individual. Mechanisms leading to disease. Arch Intern Med. 1993;153:2093–20101.

    Article  PubMed  CAS  Google Scholar 

  9. McEwen BS. The neurobiology of stress: from serendipity to clinical relevance. Brain Res. 2000;886:172–89.

    Article  PubMed  CAS  Google Scholar 

  10. Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–327.

    PubMed  Google Scholar 

  11. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. Circulation. 2017;136(6):e137–61. https://doi.org/10.1161/CIR.0000000000000509.

    Article  PubMed  Google Scholar 

  12. Gerdes AM. Restoration of thyroid hormone balance: a game changer in the treatment of heart failure? Am J Physiol Heart Circ Physiol. 2015;308:H1–10.

    Article  PubMed  CAS  Google Scholar 

  13. Mourouzis I, Forini F, Pantos C, Iervasi G. Thyroid hormone and cardiac disease: from basic concepts to clinical application. J Thyroid Res. 2011;2011:958626. https://doi.org/10.4061/2011/958626. PMID: 21765997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Pantos C, Xinaris C, Mourouzis I, et al. Thyroid hormone receptor alpha 1: a switch to cardiac cell “metamorphosis”? J Physiol Pharmacol. 2008;59:253–69. PMID: 18622044.

    PubMed  CAS  Google Scholar 

  15. Mourouzis I, Mantzouratou P, Galanopoulos G, Kostakou E, Roukounakis N, Kokkinos AD, Cokkinos DV, Pantos C. Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signaling. Mol Cell Biochem. 2012;363:235–43. https://doi.org/10.1007/s11010-011-1175-9.

    Article  PubMed  CAS  Google Scholar 

  16. Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, Gerdes AM. Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol. 2008;44:180–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39:841–4.

    Article  PubMed  CAS  Google Scholar 

  18. Rybin V, Steinberg SF. Thyroid hormone represses protein kinase C isoform expression and activity in rat cardiac myocytes. Circ Res. 1996;79:388–98.

    Article  PubMed  CAS  Google Scholar 

  19. Pantos C, Mourouzis I, Saranteas T, Clave´ G, Ligeret H, Noack-Fraissignes P, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol. 2009;104:69–77. https://doi.org/10.1007/s00395-008-0758-4.

    Article  PubMed  CAS  Google Scholar 

  20. Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, Karamanoli E, Cokkinos DD, Carageorgiou H, Varonos D, Cokkinos DV. Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem. 2003;242:173–80.

    Article  PubMed  CAS  Google Scholar 

  21. Chen YF, Weltman NY, Li X, Youmans S, Krause D, Gerdes AM. Improvement of left ventricular remodeling after myocardial infarction with 8 weeks L-thyroxine treatment in rats. J Transl Med. 2013;11:40. https://doi.org/10.1186/1479-5876-11-40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Weltman NY, Pol CJ, Zhang Y, Wang Y, Koder A, Raza S, Zucchi R, Saba A, Colligiani D, Gerdes AM. Long-term physiological T3 supplementation in hypertensive heart disease in rats. Am J Physiol Heart Circ Physiol. 2015;309:H1059–65. https://doi.org/10.1152/ajpheart.00431.2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Nicolini G, Forini F, Kusmic C, Pitto L, Mariani L, Iervasi G. Early and short-term triiodothyronine supplementation prevents adverse post-ischemic cardiac remodeling: role oftransforming growth factor-b1 and anti- fibrotic miRNA signaling. Mol Med. 2015;21(1):900–11. https://doi.org/10.2119/molmed.2015.00140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Savinova OV, Liu Y, Aasen GA, Mao K, Weltman NY, Nedich BL, Liang Q, Gerdes AM. Thyroid hormone promotes remodeling of coronary resistance vessels. PLoS One. 2011;6:e25054. https://doi.org/10.1371/journal.pone.0025054.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A, Colligiani D, Rajagopalan V, Pol CJ, Gerdes AM. Low-dose T3 replacement restores depressed cardiac T3 levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med. 2014;20:302–12. https://doi.org/10.2119/molmed.2013.00040.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tang YD, Kuzman JA, Said S, et al. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation. 2005;112:3122–30.

    Article  PubMed  CAS  Google Scholar 

  27. Dillmann WH. Biochemical basis of thyroid hormone action in the heart. Am J Med. 1990;88:626–30. PMID: 2189306.

    Article  PubMed  CAS  Google Scholar 

  28. Li X, Yao Y, Chen Z, Fan S, Hua W, Zhang S, Fan X. Thyroid-stimulating hormone within the normal range and risk of major adverse cardiovascular events in nonischemic dilated cardiomyopathy patients with severe left ventricular dysfunction. Clin Cardiol. 2019;42:120–8. https://doi.org/10.1002/clc.23117.

    Article  PubMed  Google Scholar 

  29. Sato Y, Yoshihisa A, Kimishima Y, Kiko T, Kanno Y, Yokokawa T, Abe S, Misaka T, Sato T, Oikawa M, Kobayashi A, Yamaki T, Kunii H, Nakazato K, Takeishi Y. Low T3 syndrome is associated with high mortality in hospitalized patients with heart failure. J Card Fail. 2019;25:195–203. https://doi.org/10.1016/j.cardfail.2019.01.007.

    Article  PubMed  Google Scholar 

  30. Kannan L, Shaw PA, Morley MP, Brandimarto J, Fang JC, Sweitzer NK, Cappola TP, Cappola AR. Thyroid dysfunction in heart failure and cardiovascular outcomes. Circ Heart Fail. 2018;11:e005266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Sato Y, Yoshihisa A, Kimishima Y, Kiko T, Watanabe S, Kanno Y, Abe S, Miyata M, Sato T, Suzuki S, Oikawa M, Kobayashi A, Yamaki T, Kunii H, Nakazato K, Ishida T, Takeishi Y. Subclinical hypothyroidism is associated with adverse prognosis in heart failure patients. Can J Cardiol. 2018;34:80–7.

    Article  PubMed  Google Scholar 

  32. Chen YY, Shu XR, Su ZZ, Lin RJ, Zhang HF, Yuan WL, Wang JF, Xie SL. A low-normal free triiodothyronine level is associated with adverse prognosis in euthyroid patients with heart failure receiving cardiac resynchronization therapy. Int Heart J. 2017;58:908–14. https://doi.org/10.1536/ihj.16-477.

    Article  PubMed  CAS  Google Scholar 

  33. Hayashi T, Hasegawa T, Kanzaki H, Funada A, Amaki M, Takahama H, Ohara T, Sugano Y, Yasuda S, Ogawa H, Anzai T. Subclinical hypothyroidism is an independent predictor of adverse cardiovascular outcomes in patients with acute decompensated heart failure. ESC Heart Fail. 2016;3:168–76.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang W, Guan H, Fang W, Zhang K, Gerdes AM, Iervasi G, Tang Y. Free triiodothyronine level correlates with myocardial injury and prognosis in idiopathic dilated cardiomyopathy: evidence from cardiac MRI and SPECT/PET imaging. Sci Rep. 2016;6:39811.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Okayama D, Minami Y, Kataoka S, Shiga T, Hagiwara N. Thyroid function on admission and outcome in patients hospitalized for acute decompensated heart failure. J Cardiol. 2015;66:205–11. https://doi.org/10.1016/j.jjcc.2015.04.006.

    Article  PubMed  Google Scholar 

  36. Wang W, Guan H, Gerdes M, Iervasi G, Yang Y, Tang Y. Thyroid status, cardiac function and mortality in patients with idiopathic dilated cardiomyopathy. J Clin Endocrinol Metab. 2015;100:3210–8.

    Article  PubMed  CAS  Google Scholar 

  37. Chen S, Shauer A, Zwas DR, Lotan C, Keren A, Gotsman I. The effect of thyroid function on clinical outcome in patients with heart failure. Eur J Heart Fail. 2014;16:217–26.

    Article  PubMed  CAS  Google Scholar 

  38. Chuang CP, Jong YS, Wu CY, Lo HM. Impact of triiodothyronine and N-terminal pro-B-type natriuretic peptide on the long term survival of critically ill patients with acute heart failure. Am J Cardiol. 2014;113:845–50.

    Article  PubMed  CAS  Google Scholar 

  39. Li X, Yang X, Wang Y, Ding L, Wang J, Hua W. The prevalence and prognostic effects of subclinical thyroid dysfunction in dilated cardiomyopathy patients: a single-center cohort study. J Card Fail. 2014;20(7):506–12.

    Article  PubMed  Google Scholar 

  40. Perez AC, Jhund PS, Stott DJ, Gullestad L, Cleland JG, van Veldhuisen DJ, Wikstrand J, Kjekshus J, McMurray JJ. Thyroid-stimulating hormone and clinical outcomes: the CORONA trial (controlled rosuvastatin multinational study in heart failure). JACC Heart Fail. 2014;2:35–40. https://doi.org/10.1016/j.jchf.2013.07.008.

    Article  PubMed  Google Scholar 

  41. Frey A, Kroiss M, Berliner D, Seifert M, Allolio B, Güder G, Ertl G, Angermann CE, Störk S, Fassnacht M. Prognostic impact of subclinical thyroid dysfunction in heart failure. Int J Cardiol. 2013;168:300–5.

    Article  PubMed  Google Scholar 

  42. Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, Lee KL, Bardy GH. Thyroid function in heart failure and impact on mortality. JACC Heart Fail. 2013;1:48–55.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Passino C, Pingitore A, Landi P, Fontana M, Zyw L, Clerico A, Emdin M, Iervasi G. Prognostic value of combined measurement of brain natriuretic peptide and triiodothyronine in heart failure. J Card Fail. 2009;15:35–40.

    Article  PubMed  CAS  Google Scholar 

  44. Iacoviello M, Guida P, Guastamacchia E, Triggiani V, Forleo C, Catanzaro R, Cicala M, Basile M, Sorrentino S, Favale S. Prognostic role of sub-clinical hypothyroidism in chronic heart failure outpatients. Curr Pharm Des. 2008;14:2686–92.

    Article  PubMed  CAS  Google Scholar 

  45. Kozdag G, Ural D, Vural A, Agacdiken A, Kahraman G, Sahin T, Ural E, Komsuoglu B. Relation between free triiodothyronine/free thyroxine ratio, echocardiographic parameters and mortality in dilated cardiomyopathy. Eur J Heart Fail. 2005;7:113–8.

    Article  PubMed  CAS  Google Scholar 

  46. Pingitore A, Landi P, Taddei MC, Ripoli A, L'Abbate A, Iervasi G. Triiodothyronine levels for risk stratification of patients with chronic heart failure. Am J Med. 2005;118:132136.

    Article  CAS  Google Scholar 

  47. Hamilton MA, Stevenson LW, Luu M, Walden JA. Altered thyroid hormone metabolism in advanced heart failure. J Am Coll Cardiol. 1990;16(1):91–5.

    Article  PubMed  CAS  Google Scholar 

  48. Wang B, Liu S, Li L, Yao Q, Song R, Shao X, Li Q, Shi X, Zhang J. Non-thyroidal illness syndrome in patients with cardiovascular diseases: a systematic review and meta-analysis. Int J Cardiol. 2017;226:1–10.

    Article  PubMed  Google Scholar 

  49. Opasich C, Pacini F, Ambrosino N, Riccardi PG, Febo O, Ferrari R, Cobelli F, Tavazzi L. Sick euthyroid syndrome in patients with moderate-to-severe chronic heart failure. Eur Heart J. 1996;17(12):1860–6.

    Article  PubMed  CAS  Google Scholar 

  50. Ascheim DD, Hryniewicz K. Thyroid hormone metabolism in patients with congestive heart failure: the low triiodothyronine state. Thyroid. 2000;6:511–5.

    Google Scholar 

  51. Rothberger GD, Gadhvi S, Michelakis N, Kumar A, Calixte R, Shapiro LE. Usefulness of serum triiodothyronine (T3) to predict outcomes in patients hospitalized with acute heart failure. Am J Cardiol. 2017;119(4):599–603. https://doi.org/10.1016/j.amjcard.2016.10.045.

    Article  PubMed  CAS  Google Scholar 

  52. Rhee CM, Curhan GC, Alexander EK, Bhan I, Brunelli SM. Subclinical hypothyroidism and survival: the effects f heart failure and race. J Clin Endocrinol Metab. 2013;98:2326–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mahal S, Datta S, Ravat V, Patel P, Saroha B, Patel RS. Does subclinical hypothyroidism affect hospitalization outcomes and mortality in congestive cardiac failure patients? Cureus. 2018;10:e2766. https://doi.org/10.7759/cureus.2766.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Fontes R, Coeli CR, Aguiar F, Vaisman M. Reference interval of thyroid stimulating hormone and free thyroxine in a reference population over 60 years old and in very old subjects (over 80 years): comparison to young subjects. Thyroid Res. 2013;6:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Stott DJ, Rodondi N, Kearney PM, et al. Thyroid hormone therapy for older adults with subclinical hypothyroidism. N Engl J Med. 2017;376:2534–44.

    Article  PubMed  CAS  Google Scholar 

  56. Silva-Tinoco R, Castillo-Martínez L, Orea-Tejeda A, et al. Developing thyroid disorders is associated with poor prognosis factors in patient with stable chronic heart failure. Int J Cardiol. 2011;147:e24–5.

    Article  PubMed  Google Scholar 

  57. Merla R, Martinez JD, Martinez MA, et al. Hypothyroidism and renal function in patients with systolic heart failure. Tex Heart Inst J. 2010;37:66–9.

    PubMed  PubMed Central  Google Scholar 

  58. McAlister FA, Ezekowitz J, Tarantini L, et al. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC) Investigators. Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction: impact of the new Chronic Kidney Disease-Epidemiology Collaboration Group formula. Circ Heart Fail. 2012;5:309–14.

    Article  PubMed  Google Scholar 

  59. Drechsler C, Schneider A, Gutjahr-Lengsfeld L, et al. Thyroid function, cardiovascular events, and mortality in diabetic hemodialysis patients. Am J Kidney Dis. 2014;63:988–96.

    Article  PubMed  CAS  Google Scholar 

  60. Shin DH, Lee MJ, Lee HS, et al. Thyroid hormone replacement therapy attenuates the decline of renal function in chronic kidney disease patients with subclinical hypothyroidism. Thyroid. 2013;23:654–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Amin A, Chitsazan M, Taghavi S, Ardeshiri M. Effects of triiodothyronine replacement therapy in patietns with chronic stable heart failure and low-triidotrhyronine syndrome: a randomized, double-blind, placebo-controlled study. ESC Heart Fail. 2015;2:5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Holmager P, Schmidt U, Mark P, Andersen U, Dominguez H, Raymond I, Zerahn B, Nygaard B, Kistorp C, Faber J. Long-term L-Triiodothyronine (T3) treatment in stable systolic heart failure patients: a randomised, double-blind, cross-over, placebo-controlled intervention study. Clin Endocrinol. 2015;83(6):931–7. https://doi.org/10.1111/cen.12648.

    Article  CAS  Google Scholar 

  63. Curotto Grasiosi J, Peresotti B, Machado RA, et al. Improvement in functional capacity after levothyroxine treatment in patients with chronic heart failure and sublinical hypothyroidism. Endocrinol Nutr. 2013;60:427–32.

    Article  PubMed  Google Scholar 

  64. Goldman S, McCarren M, Morkin E, et al. DITPA (3,5-Diiodothyropropionic Acid), a thyroid hormone analog to treat heart failure: phase II trial Veterans Affairs Cooperative Study. Circulation. 2009;119:3093–100.

    Article  PubMed  CAS  Google Scholar 

  65. Pingitore A, Galli E, Barison A, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93:1351–8.

    Article  PubMed  CAS  Google Scholar 

  66. Malik FS, Mehra MR, Uber PA, et al. Intravenous thyroid hormone supplementation in heart failure with cardiogenic shock. J Card Fail. 1999;5:31–7.

    Article  PubMed  CAS  Google Scholar 

  67. Iervasi G, Emdin M, Colzani RMP, et al. Beneficial effects of long-term triiodothyronine (T3) infusion in patients with advanced heart failure and low T3 syndrome. In: Kimchi A, editor. Second International Congress on Heart Disease—new trends in research, diagnosis and treatment. Englewood: Medimond Medical Publications; 2001. p. 549–53.

    Google Scholar 

  68. Hamilton MA, Stevenson LW, Fonarow GC, et al. Safety and hemodynamic effects of intravenous triiodothyronine in advanced congestive heart failure. Am J Cardiol. 1998;81:443–7.

    Article  PubMed  CAS  Google Scholar 

  69. Moruzzi P, Doria E, Agostoni PG. Medium-term effectiveness of L-thyroxine treatment in idiopathic dilated cardiomyopathy. Am J Med. 1996;101:461–7.

    Article  PubMed  CAS  Google Scholar 

  70. Moruzzi P, Doria E, Agostoni PG, et al. Usefulness of L-thyroxine to improve cardiac and exercise performance in idiopathic dilated cardiomyopathy. Am J Cardiol. 1994;73:374–8.

    Article  PubMed  CAS  Google Scholar 

  71. Hammond HK, white FC, Buxton IL, et al. Increased myocardial beta-receptors and adrenergic responses in hyperthyroid pigs. Am J Phys. 1987;252:H283–90.

    CAS  Google Scholar 

  72. Minatoya Y, Ito K, Kagaya Y, Asaumi Y, Takeda M, Nakayama M, Takahashi J, Iguchi A, Shirato K, Shimokawa H. Depressed contractile reserve and impaired calcium handling of cardiac myocytes from chronically unloaded hearts are ameliorated with the administration of physiological treatment dose of T3 in rats. Acta Physiol (Oxf). 2007;189(3):221–31.

    Article  CAS  Google Scholar 

  73. Kiss E, Jakab G, Kranias EG, et al. Thyroid hormone-induced alterations in phospolambanon protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Circ Res. 1994;75:245–51.

    Article  PubMed  CAS  Google Scholar 

  74. Ripoli A, Pingitore A, Favilli B, Bottoni A, Turchi S, Osman NF, De Marchi D, Lombardi M, L’Abbate A, Iervasi G. Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol. 2005;45(3):439–45.

    Article  PubMed  Google Scholar 

  75. Mann DL. Mechanisms and model in heart failure. Circulation. 1999;100:999–1008.

    Article  PubMed  CAS  Google Scholar 

  76. Escobar-Morreale HF, Del Rey FE, Obregon MJ, et al. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomised rat. Endocrinology. 1996;137:2490–502.

    Article  PubMed  CAS  Google Scholar 

  77. Garber JR, Cobin RH, Gharib H, Hennessey JV, Klein I, Mechanick JI, Pessah-Pollack R, Singer PA, Woeber KA. Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association. Thyroid. 2012;22:1200–35.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Pingitore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pingitore, A., Mastorci, F. (2020). TH Treatment in HF. In: Iervasi, G., Pingitore, A., Gerdes, A., Razvi, S. (eds) Thyroid and Heart . Springer, Cham. https://doi.org/10.1007/978-3-030-36871-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36871-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36870-8

  • Online ISBN: 978-3-030-36871-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics