Skip to main content

The Thyroid-Oxidative Stress Axis in Heart Failure

  • Chapter
  • First Online:
Thyroid and Heart

Abstract

Increased or reduced action of thyroid hormones (THs), both hyper- and hypothyroidism, may have relevant cardiovascular effects, which include regulation of cardiac contractility and heart rate, diastolic function, and systemic vascular resistance, thus affecting the onset and development of heart failure (HF). Many of these actions are determined by thyroid-induced oxidative stress modulation, for example, through the direct production of hydrogen peroxide (H2O2) during the synthesis of THs. Oxidative stress alteration, as both increased oxidative stress and reduced availability of antioxidants, exacerbated oxidation of low density lipoproteins, modulated nitric oxide bioavailability, and increased inflammation. These events have been clearly involved in any phase of HF development and extent. The present review aims to discuss oxidative stress status under altered thyroid states in HF pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52:601–23.

    Article  CAS  PubMed  Google Scholar 

  2. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: applications to cardiovascular research and practice. Redox Biol. 2013;1:483–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Resch U, Helsel G, Tatzber F, Sinzinger H. Antioxidant status in thyroid dysfunction. Clin Chem Lab Med. 2002;40:1132–4.

    Article  CAS  PubMed  Google Scholar 

  4. Mancini A, Di Segni C, Raimondo S, Olivieri G, Silvestrini A, Meucci E, Currò D. Thyroid hormones, oxidative stress, and inflammation. Mediat Inflamm. 2016;2016:6757154.

    Article  CAS  Google Scholar 

  5. Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxidative Med Cell Longev. 2015;2015:854265.

    Article  CAS  Google Scholar 

  6. Costa VM, Carvalho F, Duarte JA, Bastos Mde L, Remião F. The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol. 2013;26:1285–311.

    Article  CAS  PubMed  Google Scholar 

  7. Ayoub KF, Pothineni NVK, Rutland J, Ding Z, Mehta JL. Immunity, inflammation, and oxidative stress in heart failure: emerging molecular targets. Cardiovasc Drugs Ther. 2017;31:593–608.

    Article  CAS  PubMed  Google Scholar 

  8. Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol. 2014;10:582–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mishra P, Samanta L. Oxidative stress and heart failure in altered thyroid states. ScientificWorldJournal. 2012;2012:741861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gredilla R, Barja G, López-Torres M. Thyroid hormone-induced oxidative damage on lipids, glutathione and DNA in the mouse heart. Free Radic Res. 2001;35:417–25.

    Article  CAS  PubMed  Google Scholar 

  11. Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress. Cell Mol Life Sci. 2006;63:414–34.

    Article  CAS  PubMed  Google Scholar 

  12. Venditti P, Balestrieri M, Di Meo S, De Leo T. Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. J Endocrinol. 1997;155:151–7.

    Article  CAS  PubMed  Google Scholar 

  13. da Rosa Araujo AS, Silva de Miranda MF, de Oliveira UO, Fernandes T, Llesuy S, Rios Kucharski LC, Khaper N, Belló-Klein A. Increased resistance to hydrogen peroxide-induced cardiac contracture is associated with decreased myocardial oxidative stress in hypothyroid rats. Cell Biochem Funct. 2010;28:38–44.

    Article  PubMed  CAS  Google Scholar 

  14. Shinohara R, Mano T, Nagasaka A, Hayashi R, Uchimura K, Nakano I, Watanabe F, Tsugawa T, Makino M, Kakizawa H, Nagata M, Iwase K, Ishizuki Y, Itoh M. Lipid peroxidation levels in rat cardiac muscle are affected by age and thyroid status. J Endocrinol. 2000;164:97–102.

    Article  CAS  PubMed  Google Scholar 

  15. Asayama K, Dobashi K, Hayashibe H, Megata Y, Kato K. Lipid peroxidation and free radical scavengers in thyroid dysfunction in the rat: a possible mechanism of injury to heart and skeletal muscle in hyperthyroidism. Endocrinology. 1987;121:2112–8.

    Article  CAS  PubMed  Google Scholar 

  16. Bastug E, Tasliyurt T, Kutluturk F, Sahin S, Yilmaz A, Sivgin H, Yelken BM, Ozturk B, Yilmaz A, Sahin S. Evaluation of oxidative status with exhaled breath 8-isoprostane levels in patients with hyperthyroidism. Endocr Metab Immune Disord Drug Targets. 2013;13:306–10.

    Article  CAS  PubMed  Google Scholar 

  17. Erem C, Suleyman AK, Civan N, Mentese A, Nuhoglu İ, Uzun A, Ersoz HO, Deger O. Ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hyperthyroidism: effects of treatment on oxidative stress. Endocr J. 2015;62:493–501.

    Article  CAS  PubMed  Google Scholar 

  18. Cebeci E, Alibaz-Oner F, Usta M, Yurdakul S, Erguney M. Evaluation of oxidative stress, the activities of paraoxonase and arylesterase in patients with subclinical hypothyroidism. J Investig Med. 2012;60:23–8.

    Article  CAS  PubMed  Google Scholar 

  19. Reddy VS, Bukke S, Mahato K, Kumar V, Reddy NV, Munikumar M, Vodelu B. A meta-analysis of the association of serum ischaemia-modified albumin levels with human hypothyroidism and hyperthyroidism. Biosci Rep. 2017;37.

    Google Scholar 

  20. Erem C, Suleyman AK, Civan N, Mentese A, Nuhoglu İ, Uzun A, Coskun H, Deger O. The effect of L-thyroxine replacement therapy on ischemia-modified albümin and malondialdehyde levels in patients with overt and subclinical hypothyroidism. Endocr Res. 2016;41:350–60.

    Article  CAS  PubMed  Google Scholar 

  21. Cheserek MJ, Wu GR, Ntazinda A, Shi YH, Shen LY, Le GW. Association between thyroid hormones, lipids and oxidative stress markers in subclinical hypothyroidism. J Med Biochem. 2015;34:323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reddy VS, Gouroju S, Suchitra MM, Suresh V, Sachan A, Srinivasa Rao PV, Bitla AR. Antioxidant defense in overt and subclinical hypothyroidism. Horm Metab Res. 2013;45:754–8.

    Article  CAS  PubMed  Google Scholar 

  23. Öztürk Ü, Vural P, Özderya A, Karadağ B, Doğru-Abbasoğlu S, Uysal M. Oxidative stress parameters in serum and low density lipoproteins of Hashimoto’s thyroiditis patients with subclinical and overt hypothyroidism. Int Immunopharmacol. 2012;14:349–52.

    Article  PubMed  CAS  Google Scholar 

  24. Pantos C, Mourouzis I. The emerging role of TRα1 in cardiac repair: potential therapeutic implications. Oxidative Med Cell Longev. 2014;2014:481482.

    Article  CAS  Google Scholar 

  25. Bengel FM, Nekolla SG, Ibrahim T, Weniger C, Ziegler SI, Schwaiger M. Effect of thyroid hormones on cardiac function, geometry, and oxidative metabolism assessed noninvasively by positron emission tomography and magnetic resonance imaging. J Clin Endocrinol Metab. 2000;85:1822–7.

    Article  CAS  PubMed  Google Scholar 

  26. Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, Peeters R, Zaman A, Iervasi G. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71:1781–96.

    Article  CAS  PubMed  Google Scholar 

  27. Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, Lee KL, Bardy GH. Thyroid function in heart failure and impact on mortality. JACC Heart Fail. 2013;1:48–55.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116:1725–35.

    Article  PubMed  Google Scholar 

  29. Asayama K, Kato K. Oxidative muscular injury and its relevance to hyperthyroidism. Free Radic Biol Med. 1990;8:293–303.

    Article  CAS  PubMed  Google Scholar 

  30. Danzi S, Klein I. Thyroid disease and the cardiovascular system. Endocrinol Metab Clin N Am. 2014;43:517–28.

    Article  Google Scholar 

  31. Vargas-Uricoechea H, Bonelo-Perdomo A. Thyroid dysfunction and heart failure: mechanisms and associations. Curr Heart Fail Rep. 2017;14:48–58.

    Article  CAS  PubMed  Google Scholar 

  32. Vargas-Uricoechea H, Sierra-Torres CH. Thyroid hormones and the heart. Horm Mol Biol Clin Invest. 2014;18:15–26.

    CAS  Google Scholar 

  33. Triggiani V, Iacoviello M. Thyroid disorders in chronic heart failure: from prognostic set-up to therapeutic management. Endocr Metab Immune Disord Drug Targets. 2013;13:22–37.

    Article  CAS  PubMed  Google Scholar 

  34. Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, L’Abbate A, Donato L. Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation. 2003;107:708–13.

    Article  PubMed  Google Scholar 

  35. Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, L'abbate A, Mariotti R, Iervasi G. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93:1351–8.

    Article  CAS  PubMed  Google Scholar 

  36. Mitchell JE, Hellkamp AS, Mark DB, et al. Thyroid function in heart failure and impact on mortality. J Am Coll Cardiol HF. 2013;1:48–55.

    Google Scholar 

  37. Sabatino L, Iervasi G, Pingitore A. Thyroid hormone and heart failure: from myocardial protection to systemic regulation. Expert Rev Cardiovasc Ther. 2014;12:1227–36.

    Article  CAS  PubMed  Google Scholar 

  38. Holmager P, Schmidt U, Mark P, Andersen U, Dominguez H, Raymond I, Zerahn B, Nygaard B, Kistorp C, Faber J. Long-term L-triiodothyronine (T3) treatment in stable systolic heart failure patients: a randomised, double-blind, cross-over, placebo-controlled intervention study. Clin Endocrinol. 2015;83:931–7.

    Article  CAS  Google Scholar 

  39. Amin A, Chitsazan M, Taghavi S, Ardeshiri M. Effects of triiodothyronine replacement therapy in patients with chronic stable heart failure and low-triiodothyronine syndrome: a randomized, double-blind, placebo-controlled study. ESC Heart Fail. 2015;2:5–11.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol. 2003;284:H108–15.

    Article  CAS  PubMed  Google Scholar 

  41. Mondal NK, Sorensen EN, Pham SM, Koenig SC, Griffith BP, Slaughter MS, Wu ZJ. Systemic inflammatory response syndrome in end-stage heart failure patients following continuous-flow left ventricular assist device implantation: differences in plasma redox status and leukocyte activation. Artif Organs. 2016;40:434–43.

    Article  CAS  PubMed  Google Scholar 

  42. Wojciechowska C, Romuk E, Tomasik A, Skrzep-Poloczek B, Nowalany-Kozielska E, Birkner E, Jacheć W. Oxidative stress markers and C-reactive protein are related to severity of heart failure in patients with dilated cardiomyopathy. Mediat Inflamm. 2014;2014:147040.

    Google Scholar 

  43. Radovanovic S, Krotin M, Simic DV, Mimic-Oka J, Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Ninkovic N, Ivanovic B, Simic T. Markers of oxidative damage in chronic heart failure: role in disease progression. Redox Rep. 2008;1:109–16.

    Article  CAS  Google Scholar 

  44. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation. 1998;97:1536–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wolfram R, Oguogho A, Palumbo B, Sinzinger H. Enhanced oxidative stress in coronary heart disease and chronic heart failure as indicated by an increased 8-epi-PGF (2alpha). Eur J Heart Fail. 2005;7:167–72.

    Article  CAS  PubMed  Google Scholar 

  46. Tingberg E, Ohlin AK, Gottsäter A, Ohlin H. Lipid peroxidation is not increased in heart failure patients on modern pharmacological therapy. Int J Cardiol. 2006;112:275–81.

    Article  PubMed  Google Scholar 

  47. Zia AA, Komolafe BO, Moten M, Ahokas RA, McGee JE, William Rosenberg E, Bhattacharya SK, Weber KT. Supplemental vitamin D and calcium in the management of African Americans with heart failure having hypovitaminosis D. Am J Med Sci. 2011;341:113–8.

    Article  PubMed  Google Scholar 

  48. Keith M, Geranmayegan A, Sole MJ, Kurian R, Robinson A, Omran AS, Jeejeebhoy KN. Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol. 1998;31:1352–6.

    Article  CAS  PubMed  Google Scholar 

  49. Di Minno A, Turnu L, Porro B, Squellerio I, Cavalca V, Tremoli E, Di Minno MN. 8-Hydroxy-2-deoxyguanosine levels and heart failure: a systematic review and meta-analysis of the literature. Nutr Metab Cardiovasc Dis. 2017;27:201–8.

    Article  PubMed  CAS  Google Scholar 

  50. de Meirelles LR, Resende Ade C, Matsuura C, Salgado A, Pereira NR, Cascarelli PG, Mendes-Ribeiro AC, Brunini TM. Platelet activation, oxidative stress and overexpression of inducible nitric oxide synthase in moderate heart failure. Clin Exp Pharmacol Physiol. 2011;38:705–10.

    Article  PubMed  CAS  Google Scholar 

  51. Sheeran FL, Pepe S. Mitochondrial bioenergetics and dysfunction in failing heart. Adv Exp Med Biol. 2017;982:65–80.

    Article  PubMed  CAS  Google Scholar 

  52. Perrotta C, De Palma C, Falcone S, Sciorati C, Clementi E. Nitric oxide, ceramide and sphingomyelinase-coupled receptors: a tale of enzymes and messengers coordinating cell death, survival and differentiation. Life Sci. 2005;77:1732–9.

    Article  CAS  PubMed  Google Scholar 

  53. Kogot-Levin A, Saada A. Ceramide and the mitochondrial respiratory chain. Biochimie. 2014;100:88–94.

    Article  CAS  PubMed  Google Scholar 

  54. Zigdon H, Kogot-Levin A, Park JW, Goldschmidt R, Kelly S, Merrill AH Jr, Scherz A, Pewzner-Jung Y, Saada A, Futerman AH. Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain. J Biol Chem. 2013;288:4947–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Peterson LR, Xanthakis V, Duncan MS, Gross S, Friedrich N, Völzke H, Felix SB, Jiang H, Sidhu R, Nauck M, Jiang X, Ory DS, Dörr M, Vasan RS, Schaffer JE. Ceramide remodeling and risk of cardiovascular events and mortality. J Am Heart Assoc. 2018;7.

    Google Scholar 

  56. Reichlin T, Socrates T, Egli P, Potocki M, Breidthardt T, Arenja N, Meissner J, Noveanu M, Reiter M, Twerenbold R, Schaub N, Buser A, Mueller C. Use of myeloperoxidase for risk stratification in acute heart failure. Clin Chem. 2010;56:944–51.

    Article  CAS  PubMed  Google Scholar 

  57. Tang WH, Katz R, Brennan ML, Aviles RJ, Tracy RP, Psaty BM, Hazen SL. Usefulness of myeloperoxidase levels in healthy elderly subjects to predict risk of developing heart failure. Am J Cardiol. 2009;103:1269–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Radovanovic S, Savic-Radojevic A, Pljesa-Ercegovac M, Djukic T, Suvakov S, Krotin M, Simic DV, Matic M, Radojicic Z, Pekmezovic T, Simic T. Markers of oxidative damage and antioxidant enzyme activities as predictors of morbidity and mortality in patients with chronic heart failure. J Card Fail. 2012;18:493–501.

    Article  CAS  PubMed  Google Scholar 

  59. Askari H, Rajani SF, Poorebrahim M, Haghi-Aminjan H, Raeis-Abdollahi E, Abdollahi M. A glance at the therapeutic potential of irisin against diseases involving inflammation, oxidative stress, and apoptosis: an introductory review. Pharmacol Res. 2018;129:44–55.

    Article  CAS  PubMed  Google Scholar 

  60. Hsieh IC, Ho MY, Wen MS, Chen CC, Hsieh MJ, Lin CP, Yeh JK, Tsai ML, Yang CH, Wu VC, Hung KC, Wang CC, Wang CY. Serum irisin levels are associated with adverse cardiovascular outcomes in patients with acute myocardial infarction. Int J Cardiol. 2018;261:12–7.

    Article  PubMed  Google Scholar 

  61. White M, Ducharme A, Ibrahim R, Whittom L, Lavoie J, Guertin MC, Racine N, He Y, Yao G, Rouleau JL, Schiffrin EL, Touyz RM. Increased systemic inflammation and oxidative stress in patients with worsening congestive heart failure: improvement after short-term inotropic support. Clin Sci (Lond). 2006;110:483–9.

    Article  CAS  Google Scholar 

  62. Katsiki N, Doumas M, Mikhailidis DP. Lipids, statins and heart failure: an update. Curr Pharm Des. 2016;22:4796–806.

    Article  CAS  PubMed  Google Scholar 

  63. Nakamura K, Murakami M, Miura D, Yunoki K, Enko K, Tanaka M, Saito Y, Nishii N, Miyoshi T, Yoshida M, Oe H, Toh N, Nagase S, Kohno K, Morita H, Matsubara H, Kusano KF, Ohe T, Ito H. Beta-blockers and oxidative stress in patients with heart failure. Pharmaceuticals (Basel). 2011;4:1088–100.

    Article  CAS  Google Scholar 

  64. Vanzelli AS, Medeiros A, Rolim N, Bartholomeu JB, Cunha TF, Bechara LR, Gomes ER, Mattos KC, Sirvente R, Salemi VM, Mady C, Negrao CE, Guatimosim S, Brum PC. Integrative effect of carvedilol and aerobic exercise training therapies on improving cardiac contractility and remodeling in heart failure mice. PLoS One. 2013;8:e62452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rehsia NS, Dhalla NS. Mechanisms of the beneficial effects of beta-adrenoceptor antagonists in congestive heart failure. Exp Clin Cardiol. 2010;15:e86–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Le DE, Pascotto M, Leong-Poi H, Sari I, Micari A, Kaul S. Anti-inflammatory and pro-angiogenic effects of beta blockers in a canine model of chronic ischemic cardiomyopathy: comparison between carvedilol and metoprolol. Basic Res Cardiol. 2013;108:384.

    Article  PubMed  CAS  Google Scholar 

  67. Park M, Steinberg SF. Carvedilol prevents redox inactivation of cardiomyocyte Β(1)-adrenergic receptors. JACC Basic Transl Sci. 2018;3:521–32.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kono Y, Nakamura K, Kimura H, Nishii N, Watanabe A, Banba K, Miura A, Nagase S, Sakuragi S, Kusano KF, Matsubara H, Ohe T. Elevated levels of oxidative DNA damage in serum and myocardium of patients with heart failure. Circ J. 2006;70:1001–5.

    Article  CAS  PubMed  Google Scholar 

  69. Parissis JT, Andreadou I, Bistola V, Paraskevaidis I, Filippatos G, Kremastinos DT. Novel biologic mechanisms of levosimendan and its effect on the failing heart. Expert Opin Investig Drugs. 2008;17:1143–50.

    Article  CAS  PubMed  Google Scholar 

  70. Parissis JT, Andreadou I, Markantonis SL, Bistola V, Louka A, Pyriochou A, Paraskevaidis I, Filippatos G, Iliodromitis EK, Kremastinos DT. Effects of levosimendan on circulating markers of oxidative and nitrosative stress in patients with advanced heart failure. Atherosclerosis. 2007;195:e210–5.

    Article  CAS  PubMed  Google Scholar 

  71. Adam M, Meyer S, Knors H, Klinke A, Radunski UK, Rudolph TK, Rudolph V, Spin JM, Tsao PS, Costard-Jäckle A, Baldus S. Levosimendan displays anti-inflammatory effects and decreases MPO bioavailability in patients with severe heart failure. Sci Rep. 2015;5:9704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bhatt KN, Butler J. Myocardial energetics and heart failure: a review of recent therapeutic trials. Curr Heart Fail Rep. 2018;15:191–7.

    Article  CAS  PubMed  Google Scholar 

  73. Campos JC, Queliconi BB, Bozi LHM, Bechara LRG, Dourado PMM, Andres AM, Jannig PR, Gomes KMS, Zambelli VO, Rocha-Resende C, Guatimosim S, Brum PC, Mochly-Rosen D, Gottlieb RA, Kowaltowski AJ, Ferreira JCB. Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy. 2017;13:1304–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sties SW, Andreato LV, de Carvalho T, Gonzáles AI, Angarten VG, Ulbrich AZ, de Mara LS, Netto AS, da Silva EL, Andrade A. Influence of exercise on oxidative stress in patients with heart failure. Heart Fail Rev. 2018;23:225–35.

    Article  CAS  PubMed  Google Scholar 

  75. Kiyuna LA, Prestes E, Albuquerque R, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities. Free Radic Biol Med. 2018;129:155–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dos Reis Padilha G, Sanches Machado d’Almeida K, Ronchi Spillere S, Corrêa Souza G. Dietary patterns in secondary prevention of heart failure: a systematic review. Nutrients. 2018;10.

    Article  PubMed Central  CAS  Google Scholar 

  77. Vassalle C. New biomarkers and traditional cardiovascular risk scores: any crystal ball for current effective advice and future exact prediction? Clin Chem Lab Med. 2018;56:1803–5.

    Article  CAS  PubMed  Google Scholar 

  78. Izumiya Y, Hanatani S, Kimura Y, Takashio S, Yamamoto E, Kusaka H, Tokitsu T, Rokutanda T, Araki S, Tsujita K, Tanaka T, Yamamuro M, Kojima S, Tayama S, Kaikita K, Hokimoto S, Ogawa H. Growth differentiation factor-15 is a useful prognostic marker in patients with heart failure with preserved ejection fraction. Can J Cardiol. 2014;30:338–44.

    Article  PubMed  Google Scholar 

  79. Dupuy AM, Kuster N, Curinier C, Huet F, Plawecki M, Solecki K, Roubille F, Cristol JP. Exploring collagen remodeling and regulation as prognosis biomarkers in stable heart failure. Clin Chim Acta. 2018; pii: S0009-8981:30459-5.

    Google Scholar 

  80. Sobrino-Márquez JM, Grande-Trillo A, Cantero-Pérez EM, Rangel-Sousa D, Lage-Galle E, Adsuar-Gómez A. Prognostic value of blood panel parameters in patients with dilated cardiomyopathy and advanced heart failure. Transplant Proc. 2018;50:650–2.

    Article  PubMed  Google Scholar 

  81. Bahrmann P, Bahrmann A, Hofner B, Christ M, Achenbach S, Sieber CC, Bertsch T. Multiple biomarker strategy for improved diagnosis of acute heart failure in older patients presenting to the emergency department. Eur Heart J Acute Cardiovasc Care. 2015;4:137–47.

    Article  PubMed  Google Scholar 

  82. Bjurman C, Holmström A, Petzold M, Hammarsten O, Fu ML. Assessment of a multi-marker risk score for predicting cause-specific mortality at three years in older patients with heart failure and reduced ejection fraction. Cardiol J. 2015;22:31–6.

    Article  PubMed  Google Scholar 

  83. Ng LL, Pathik B, Loke IW, Squire IB, Davies JE. Myeloperoxidase and C-reactive protein augment the specificity of B-type natriuretic peptide in community screening for systolic heart failure. Am Heart J. 2006;152:94–101.

    Article  CAS  PubMed  Google Scholar 

  84. O’Donoghue ML, Morrow DA, Cannon CP, Jarolim P, Desai NR, Sherwood MW, Murphy SA, Gerszten RE, Sabatine MS. Multimarker risk stratification in patients with acute myocardial infarction. J Am Heart Assoc. 2016;5.

    Google Scholar 

  85. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD, Pitt B, Poole-Wilson PA, Mann DL, Packer M. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation. 2006;113:1424–33.

    Article  PubMed  Google Scholar 

  86. Katz MG, Fargnoli AS, Williams RD, Kendle AP, Steuerwald NM, Bridges CR. MiRNAs as potential molecular targets in heart failure. Futur Cardiol. 2014;10:789–800.

    Article  CAS  Google Scholar 

  87. Fuschi P, Carrara M, Voellenkle C, Garcia-Manteiga JM, Righini P, Maimone B, Sangalli E, Villa F, Specchia C, Picozza M, Nano G, Gaetano C, Spinetti G, Puca AA, Magenta A, Martelli F. Central role of the p53 pathway in the noncoding-RNA response to oxidative stress. Aging (Albany NY). 2017;9:2559–86.

    Article  CAS  Google Scholar 

  88. Gurha P, Wang T, Larimore AH, Sassi Y, Abreu-Goodger C, Ramirez MO, Reddy AK, Engelhardt S, Taffet GE, Wehrens XH, Entman ML, Rodriguez A. microRNA-22 promotes heart failure through coordinate suppression of PPAR/ERR-nuclear hormone receptor transcription. PLoS One. 2013;8:e75882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang X, Song C, Zhou X, Han X, Li J, Wang Z, Shang H, Liu Y, Cao H. Mitochondria associated microRNA expression profiling of heart failure. Biomed Res Int. 2017;2017:4042509.

    PubMed  PubMed Central  Google Scholar 

  90. Liu X, Tong Z, Chen K, Hu X, Jin H, Hou M. The role of miRNA-132 against apoptosis and oxidative stress in heart failure. Biomed Res Int. 2018;2018:3452748.

    PubMed  PubMed Central  Google Scholar 

  91. Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med. 2014;6:239ps3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Dirkx E, Gladka MM, Philippen LE, Armand AS, Kinet V, Leptidis S, El Azzouzi H, Salic K, Bourajjaj M, da Silva GJ, Olieslagers S, van der Nagel R, de Weger R, Bitsch N, Kisters N, Seyen S, Morikawa Y, Chanoine C, Heymans S, Volders PG, Thum T, Dimmeler S, Cserjesi P, Eschenhagen T, da Costa Martins PA, De Windt LJ. Nfat and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat Cell Biol. 2013;15:1282–93.

    Article  CAS  PubMed  Google Scholar 

  93. Wahlquist C, Jeong D, Rojas-Muñoz A, Kho C, Lee A, Mitsuyama S, van Mil A, Park WJ, Sluijter JP, Doevendans PA, Hajjar RJ, Mercola M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature. 2014;508:531–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Thum T, Gross C, Fiedler J, Fischer T, Kissler S, Bussen M, Galuppo P, Just S, Rottbauer W, Frantz S, Castoldi M, Soutschek J, Koteliansky V, Rosenwald A, Basson MA, Licht JD, Pena JT, Rouhanifard SH, Muckenthaler MU, Tuschl T, Martin GR, Bauersachs J, Engelhardt S. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–4.

    Article  CAS  PubMed  Google Scholar 

  95. Patrick DM, Montgomery RL, Qi X, Obad S, Kauppinen S, Hill JA, van Rooij E, Olson EN. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J Clin Invest. 2010;120:3912–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. de Castro AL, Tavares AV, Campos C, Fernandes RO, Siqueira R, Conzatti A, Bicca AM, Fernandes TR, Sartório CL, Schenkel PC, Belló-Klein A, da Rosa Araujo AS. Cardioprotective effects of thyroid hormones in a rat model of myocardial infarction are associated with oxidative stress reduction. Mol Cell Endocrinol. 2014;391:22–9.

    Article  CAS  PubMed  Google Scholar 

  97. de Castro AL, Tavares AV, Fernandes RO, Campos C, Conzatti A, Siqueira R, Fernandes TR, Schenkel PC, Sartório CL, Llesuy S, Belló-Klein A, da Rosa Araujo AS. T3 and T4 decrease ROS levels and increase endothelial nitric oxide synthase expression in the myocardium of infarcted rats. Mol Cell Biochem. 2015;408:235–43.

    Article  CAS  PubMed  Google Scholar 

  98. Ghosh G, De K, Maity S, Bandyopadhyay D, Bhattacharya S, Reiter RJ, Bandyopadhyay A. Melatonin protects against oxidative damage and restores expression of GLUT4 gene in the hyperthyroid rat heart. J Pineal Res. 2007;42:71–82.

    Article  CAS  PubMed  Google Scholar 

  99. de Lorgeril M, Salen P. Selenium and antioxidant defenses as major mediators in the development of chronic heart failure. Heart Fail Rev. 2006;11:13–7.

    Article  CAS  PubMed  Google Scholar 

  100. Metes-Kosik N, Luptak I, Dibello PM, Handy DE, Tang SS, Zhi H, Qin F, Jacobsen DW, Loscalzo J, Joseph J. Both selenium deficiency and modest selenium supplementation lead to myocardial fibrosis in mice via effects on redox-methylation balance. Mol Nutr Food Res. 2012;56:1812–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wu HY, Xia YM, Ha PC, Chen XS. Changes in myocardial thyroid hormone metabolism and alpha-glycerophosphate dehydrogenase activity in rats deficient in iodine and selenium. Br J Nutr. 1997;78:671–6.

    Article  CAS  PubMed  Google Scholar 

  102. McKeag NA, McKinley MC, Woodside JV, Harbinson MT, McKeown PP. The role of micronutrients in heart failure. J Acad Nutr Diet. 2012;112:870–86.

    Article  CAS  PubMed  Google Scholar 

  103. Vassalle C, Maffei S, Iervasi G. Bone remodelling biomarkers: new actors on the old cardiovascular stage. “Biomarker validation—technological, clinical and commercial aspects” Ed Wiley-VCH Verlag GmbH & Co. KGaA, Published Online: 27 Feb 2015, Chapter 7, pp. 107–46. Print ISBN: 9783527337194. Online ISBN: 9783527680658. https://doi.org/10.1002/9783527680658.ch7.

    Google Scholar 

  104. Koch A, Grammatikos G, Trautmann S, Schreiber Y, Thomas D, Bruns F, Pfeilschifter J, Badenhoop K, Penna-Martinez M. Vitamin D supplementation enhances C18(dihydro)ceramide levels in type 2 diabetes patients. Int J Mol Sci. 2017;18.

    Article  PubMed Central  CAS  Google Scholar 

  105. Liu Z, Ren Z, Zhang J, Chuang CC, Kandaswamy E, Zhou T, Zuo L. Role of ROS and nutritional antioxidants in human diseases. Front Physiol. 2018;9:477.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Moretti HD, Colucci VJ, Berry BD. Vitamin D(3) repletion versus placebo as adjunctive treatment of heart failure patient quality of life and hormonal indices: a randomized, double-blind, placebo-controlled trial. BMC Cardiovasc Disord. 2017;17:274.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Belen E, Tipi FF, Aykan AC, Findikçioğlu U, Karakuş G, Yeşil A, Helvaci A, Kalaycioğlu E, Cetin M. Clinical staging in chronic heart failure associated with low vitamin D and elevated parathormone levels. Acta Cardiol. 2014;69:665–71.

    Article  PubMed  Google Scholar 

  108. Gouveia CH, Christoffolete MA, Zaitune CR, Dora JM, Harney JW, Maia AL, Bianco AC. Type 2 iodothyronine selenodeiodinase is expressed throughout the mouse skeleton and in the MC3T3-E1 mouse osteoplastic cell line during differentiation. Endocrinology. 2005;146:195–200.

    Article  CAS  PubMed  Google Scholar 

  109. Alrefaie Z, Awad H. Effect of vitamin D3 on thyroid function and deiodinase 2 expression in diabetic rats. Arch Physiol Biochem. 2015;121:206–9.

    Article  CAS  PubMed  Google Scholar 

  110. Miura M, Tanaka K, Komatsu Y, Suda M, Yasoda A, Sakuma Y, Ozasa A, Nakao K. A novel interaction between thyroid hormones and 1,25(OH)(2)D(3) in osteoclast formation. Biochem Biophys Res Commun. 2002;291:987–94.

    Article  CAS  PubMed  Google Scholar 

  111. Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14:39–55.

    Article  CAS  PubMed  Google Scholar 

  112. Vassalle C. Oxidative stress and cardiovascular risk prediction: the long way towards a “radical” perspective. Int J Cardiol. 2018;273:252–3.

    Article  Google Scholar 

Download references

Acknowledgments

A sincere thanks to Dr. Laura SABATINO for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Vassalle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaggini, M., Traghella, I., Vassalle, C. (2020). The Thyroid-Oxidative Stress Axis in Heart Failure. In: Iervasi, G., Pingitore, A., Gerdes, A., Razvi, S. (eds) Thyroid and Heart . Springer, Cham. https://doi.org/10.1007/978-3-030-36871-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36871-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36870-8

  • Online ISBN: 978-3-030-36871-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics