Skip to main content

Color Control of the Mechanoluminescent Material Through a Combination of Color Centers

  • Conference paper
  • First Online:
Engineering for Sustainable Future (INTER-ACADEMIA 2019)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 101))

Included in the following conference series:

  • 1616 Accesses

Abstract

We have synthesized the new organic mechanoluminescent material based on a 1,10-phenanthroline and an acetylacetone. The synthesized material shows both the photoluminescence and the mechanoluminescence with a green-color (main peak at 545 nm) by doping of a terbium (Tb). We have also investigated an effect of co-doping of Tb and europium (Eu) or dysprosium (Dy) on the luminescence property. Single doping gives a luminescence corresponding to each dopant with the main peak at 545, 612 or 573 nm for Tb, Eu or Dy, respectively, but the co-doping of Tb and Eu gives the luminescence corresponding to their doping amount ratio. As a result, the visual color can be controlled by the ratio. On the other hand, the co-doping of Tb and Dy keeps the luminescence corresponding to Tb single doping, but enhances its intensity. The results suggest that the electron transition process is different between the Tb-Eu and Tb-Dy co-doping. In the case of Tb/Eu co-doping, each dopant induced each own luminescence due to a significant difference in the electron energy state level between Tb and Eu. In contrary, the energy state of Dy becomes an extra electron supplier to Tb for the Tb/Dy co-doping. The results can expand application fields of the mechanoluminescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tiwari, N., Dubey, V., Kuraria, R.K.: Mechanoluminescence study of europium doped CaZrO3 phosphor. J. Fluores. 26(4), 1309–1315 (2016)

    Article  Google Scholar 

  2. Chandra, B.P.: Luminescence of solids. Springer, Boston, MA, USA (1998)

    Google Scholar 

  3. Jha, P., Chandra, B.P.: Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29(8), 977–993 (2014)

    Article  Google Scholar 

  4. Chandra, B.P., Parganiha, S., Chandra, V.K., Jha, P., Baghel, R.N.: Sensing of shock-wave velocity and pressure using shock-wave induced mechanoluminescence of crystals. Sens. Actuators A: Phys. 235, 203–209 (2015)

    Article  Google Scholar 

  5. Teotonio, E.E.S., Faustino, W.M., Brito, H.F., Felinto, M.C.F.C., Moura, J.L., Costa, I.F., Santos, P.R.S.: Triboluminescence: theory, synthesis, and application. Springer International Publishing, Cham (2016)

    Google Scholar 

  6. Chandra, B.P., Chandra, V.K., Jha, P.: Microscopic theory of elastico-mechanoluminescence smart materials. Appl. Phys. Lett. 104(3), 031102 (2014)

    Article  Google Scholar 

  7. Chandra, V.K., Chandra, B.P.: Suitable materials for elastico mechanoluminescence-based stress sensors. Opt. Mater. 34(1), 194–200 (2011)

    Article  Google Scholar 

  8. Jeong, S.M., Song, S., Kim, H., Joo, K.I., Takezoe, H.: Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite. Adv. Func. Mater. 26(7), 4848–4858 (2016)

    Article  Google Scholar 

  9. Botterman, J., den Eeckkhout, K.V., Baere, I.D., Poelman, D., Smet, P.F.: Mechanoluminescence in BaSi2O2N2:Eu. Acta Mater. 60(15), 5494–5500 (2012)

    Article  Google Scholar 

  10. Chandra, B.P., Chandra, V.K., Mahobia, S.K., Jha, P., Tiwari, R., Haldar, B.: Real-time mechanoluminescence sensing of the amplitude and duration of impact stress. Sens. Actuators A: Phys. 173(1), 9–16 (2012)

    Article  Google Scholar 

  11. Wang, X., Zhang, H., Yu, R., Dong, L., Peng, D., Zhang, A., Zhan, Y., Liu, H., Pan, C., Wang, Z.L.: Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27(14), 2324–2331 (2015)

    Article  Google Scholar 

  12. Takada, N., Hieda, S., Sugiyama, J., Katoh, R., Minami, N.: Mechanoluminescence from piezoelectric crystals of an europium complex. Synthesis Metals. 111–112, 587–590 (2000)

    Article  Google Scholar 

  13. Chandra, B.P.: Mechanoluminescence and high pressure photoluminescence of (Zn, Cd)S phosphors. Pramana 19(5), 455–465 (1952)

    Article  Google Scholar 

  14. Chandra, B.P., Chandra, V.K., Jha, P.: Models for intrinsic and extrinsic fracto-mechanoluminescence of solids. J. Luminesc. 135, 139–153 (2013)

    Article  Google Scholar 

  15. Lin, Y.-H., Dang, A., Deng, Y., Nan, C.W.: Studies on mechanoluminescence from SrAl2O4: Eu, Dy phosphor. Mater. Chem. Phys. 80(1), 20–22 (2003)

    Article  Google Scholar 

  16. Zhang, J.-C., Long, Y.-Z., Wang, X., Xu, C.-N.: Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions. RSC Adv. 4(77), 40665–40675 (2014)

    Article  Google Scholar 

  17. Chandra, B.P., Baghel, R.N., Luka, A.K., Sanodiya, T.R., Kuraria, R.K., Kuraria, S.R.: Strong mechanoluminescence induced by elastic deformation of rare-earth-doped strontium aluminate phosphors. J. Luminesc. 129(7), 760–766 (2009)

    Article  Google Scholar 

  18. Pust, P., Weller, V., Hecht, C., Tuecks, A., Wochnik, A.S., Henss, A.-K., Wiechert, D., Scheu, C., Schmidt, P.J., Schnick, W.: Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nature Mater. 13, 891–896 (2014)

    Article  Google Scholar 

  19. Fontenot, R.S., Hollerman, W.A., Bhat, K.N., Aggarwal, M.D.: Synthesis and characterization of highly triboluminescent doped europium tetrakis compounds. J. Luminesc. 132(7), 1812–1818 (2012)

    Article  Google Scholar 

  20. Ranasinghe, R.A.D.M., Tanaka, Y., Okuya, M., Shimomura, M., Murakami, K.: Structural characterizations of organic-based materials with extensive mechanoluminescence properties. J. Luminesc. 190, 413–423 (2017)

    Article  Google Scholar 

  21. Ranasinghe, R.A.D.M., Rajapakse, R.M.G Illeperuma O.A., Okuya, M. and Murakami, K.: Effect of added polyvinylpyrrolidone on mechanoluminescent property of europium-doped dibenzoylmethide triethylammonium. JJAP Conf. Proceed. 4, 011105(1–4) (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Murakami, K., Suzuki, K., Iwai, Y., Okuya, M., Shimomura, M. (2020). Color Control of the Mechanoluminescent Material Through a Combination of Color Centers. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics