Skip to main content

Building Energy Information: Demand and Consumption Prediction with Machine Learning Models for Sustainable and Smart Cities

  • Conference paper
  • First Online:
Engineering for Sustainable Future (INTER-ACADEMIA 2019)

Abstract

Building energy consumption plays an essential role in urban sustainability. The prediction of the energy demand is also of particular importance for developing smart cities and urban planning. Machine learning has recently contributed to the advancement of methods and technologies to predict demand and consumption for building energy systems. This paper presents a state of the art of machine learning models and evaluates the performance of these models. Through a systematic review and a comprehensive taxonomy, the advances of machine learning are carefully investigated and promising models are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Generalized boosted regression:

GBR

Deep learning:

DL

Artificial neural network:

ANN

Extreme learning machine:

ELM

Machine learning:

ML

Support vector machine:

SVM

Wavelet neural networks:

WNN

Support vector regression:

SVR

Genetic algorithm:

GA

Multi layered perceptron:

MLP

Long short-term memory:

LSTM

Decision tree:

DT

Response surface methodology:

RSM

Back propagation neural network:

BPNN

Centroid mean:

CM

Adaptive neuro fuzzy inference system:

ANFIS

Analytic network process:

ANP

Radial basis function:

RBF

Feed-forward neural networks:

FFNN

Particle swarm optimization:

PSO

Random forest:

RF

Non-random two-liquid:

NRTL

Recurrent neural network:

RNN

Partial least squares:

PLS

Discriminant analysis:

DA

Principal component analysis:

PCA

Linear discriminant analysis:

LDA

Autoregressive integrated moving average:

ARIMA

Least-squares:

LS

Sparse Bayesian:

SB

Multi criteria decision making:

MCDM

Genetic programming:

GP

Multi linear regression:

MLR

Step-wise Weight Assessment Ratio Analysis:

SWARA

Multi Objective Optimization by Ratio Analysis:

MOORA

Nonlinear autoregressive exogenous:

NARX

References

  1. Ahmad, T., et al.: Supervised based machine learning models for short, medium and long-term energy prediction in distinct building environment. Energy 158, 17–32 (2018)

    Article  Google Scholar 

  2. Jiang, Z., Lin, R., Yang, F.: A hybrid machine learning model for electricity consumer categorization using smart meter data. Energies 11(9) (2018)

    Article  Google Scholar 

  3. Kim, S.H., et al.: Deep learning based on multi-decomposition for short-term load forecasting. Energies 11(12) (2018)

    Article  Google Scholar 

  4. Laib, O., Khadir, M.T., Mihaylova, L.: Toward efficient energy systems based on natural gas consumption prediction with LSTM recurrent neural networks. Energy 177, 530–542 (2019)

    Article  Google Scholar 

  5. Li, Z., et al.: An ANN-based fast building energy consumption prediction method for complex architectural form at the early design stage. In: Building Simulation (2019)

    Article  Google Scholar 

  6. Liu, L., Ran, W.: Research on supply chain partner selection method based on BP neural network. Neural Comput. Appl. (2019)

    Google Scholar 

  7. Protić, M., Fathurrahman, F., Raos, M.: Modelling energy consumption of the republic of Serbia using linear regression and artificial neural network technique. Tehnicki Vjesnik 26(1), 135–141 (2019)

    Google Scholar 

  8. Rahman, A., Smith, A.D.: Predicting heating demand and sizing a stratified thermal storage tank using deep learning algorithms. Appl. Energy 228, 108–121 (2018)

    Article  Google Scholar 

  9. Seyedzadeh, S., et al.: Machine learning for estimation of building energy consumption and performance: a review. Visualization Eng. 6(1) (2018)

    Google Scholar 

  10. Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water (Switzerland) 10(11) (2018)

    Article  Google Scholar 

  11. Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for material design innovation. In: Kvasov, D.E., et al. (eds.), pp. 358–363. Springer (2017)

    Google Scholar 

  12. Mosavi, A., Rabczuk, T., Várkonyi-Kóczy, A.R.: Reviewing the novel machine lea0072ning tools for materials design. Luca, D., Sirghi, L., Costin, C., (eds.), pp. 50–58. Springer (2018)

    Google Scholar 

  13. Mosavi, A., et al.: State of the art of machine learning models in energy systems, a systematic review. Energies 12(7) (2019)

    Article  Google Scholar 

  14. Mosavi, A., et al.: Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Eng. Appl. Comput. Fluid Mech. 13(1), 482–492 (2019)

    Google Scholar 

  15. Mosavi, A., Várkonyi-Kóczy, A.R.: Integration of machine learning and optimization for robot learning. Jablonski, R., Szewczyk, R., (eds.), pp. 349–355. Springer (2017)

    Google Scholar 

  16. Nosratabadi, S., et al.: Sustainable business models: a review. Sustainability (Switzerland) 11(6) (2019)

    Article  Google Scholar 

  17. Qasem, S.N., et al.: Estimating daily dew point temperature using machine learning algorithms. Water (Switzerland) 11(3) (2019)

    Article  Google Scholar 

  18. Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)

    Article  Google Scholar 

  19. Riahi-Madvar, H., et al.: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng. Appl. Comput. Fluid Mech. 13(1), 529–550 (2019)

    Google Scholar 

  20. Shabani, S., Samadianfard, S., Taghi Sattari, M., Shamshirband, S., Mosavi, A., Kmet, T., Várkonyi-Kóczy, A.R.: Modeling daily pan evaporation in humid cli-mates Using Gaussian Process Regression (2019). arXiv:2019070351. https://doi.org/10.20944/preprints201907.0351.v1

  21. Shamshirband, S., Hadipoor, S., Baghban, M., Mosavi, A., Bukor, A., Annamaria, J., Varkonyi-Koczy, R.: Developing an ANFIS-PSO model to predict mercury emissions in Combustion Flue Gases (2019). arXiv:2019070165. https://doi.org/10.20944/preprints201907.0165.v1

  22. Shamshirband, S., et al.: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech 13(1), 91–101 (2019)

    Google Scholar 

  23. Shamshirband, S., Mosavi, A., Rabczuk, T.: Particle swarm optimization model to predict scour depth around bridge pier (2019). arXiv:1906.08863

  24. Taherei Ghazvinei, P., et al.: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech 12(1), 738–749 (2018)

    Google Scholar 

  25. Torabi, M., et al.: A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38(1), 66–76 (2019)

    Article  Google Scholar 

  26. Torabi, M., et al.: A hybrid machine learning approach for daily prediction of solar radiation. In: Lecture Notes in Networks and Systems, pp. 266–274. Springer (2019)

    Google Scholar 

  27. Aram, F., et al.: Design and validation of a computational program for analysing mental maps: aram mental map analyzer. Sustainability (Switzerland) 11(14) (2019)

    Article  Google Scholar 

  28. Asadi, E., et al.: Groundwater Quality Assessment For Drinking And Agricultural Purposes In Tabriz Aquifer, Iran (2019)

    Google Scholar 

  29. Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Performance evaluation of supervised machine learning techniques for efficient detection of emotions from online content (2019). arXiv:2019080019. https://doi.org/10.20944/preprints201908.0019.v1)

  30. Bemani, A., Baghban, A., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Applying ANN, ANFIS, and LSSVM models for estimation of Acid Sol-vent solubility in Supercritical CO2 (2019). arXiv:2019060055 https://doi.org/10.20944/preprints201906.0055.v2

  31. Choubin, B., et al.: Snow avalanche hazard prediction using machine learning methods. J. Hydrol. 577 (2019)

    Article  Google Scholar 

  32. Choubin, B., et al.: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087–2096 (2019)

    Article  Google Scholar 

  33. Dehghani, M., et al.: Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12(2) (2019)

    Article  Google Scholar 

  34. Dineva, A., et al.: Review of soft computing models in design and control of rotating electrical machines. Energies 12(6) (2019)

    Article  Google Scholar 

  35. Dineva, A., et al.: Multi-label classification for fault diagnosis of rotating electrical machines (2019)

    Google Scholar 

  36. Farzaneh-Gord, M., et al.: Numerical simulation of pressure pulsation effects of a snubber in a CNG station for increasing measurement accuracy. Eng. Appl. Comput. Fluid Mech 13(1), 642–663 (2019)

    Google Scholar 

  37. Ghalandari, M., et al.: Investigation of submerged structures’ flexibility on sloshing frequency using a boundary element method and finite element analysis. Eng. Appl. Comput. Fluid Mech 13(1), 519–528 (2019)

    Google Scholar 

  38. Ghalandari, M., et al.: Flutter speed estimation using presented differential quadrature method formulation. Eng. Appl. Comput. Fluid Mech 13(1), 804–810 (2019)

    Google Scholar 

  39. Karballaeezadeh, N., et al.: Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan-Firuzkuh road). Eng. Appl. Comput. Fluid Mech 13(1), 188–198 (2019)

    Google Scholar 

  40. Menad, N.A., et al.: Modeling temperature dependency of oil-water relative permeability in thermal enhanced oil recovery processes using group method of data handling and gene expression programming. Eng. Appl. Comput. Fluid Mech 13(1), 724–743 (2019)

    MathSciNet  Google Scholar 

  41. Mohammadzadeh, S., et al.: Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 4(2), 26 (2019)

    Article  Google Scholar 

  42. Mosavi, A., Edalatifar, M.: A hybrid neuro-fuzzy algorithm for prediction of reference evapotranspiration. In: Lecture Notes in Networks and Systems, pp. 235–243. Springer (2019)

    Google Scholar 

  43. Mosavi, A., Lopez, A., Várkonyi-Kóczy, A.R.: Industrial applications of big data: state of the art survey. Luca, D., Sirghi, L., Costin, C., (eds.), pp. 225–232. Springer (2018)

    Google Scholar 

  44. Osborne, P.E., Alvares-Sanches, T.: Quantifying how landscape composition and configuration affect urban land surface temperatures using machine learning and neutral landscapes. Comput. Environ. Urban Syst. 76, 80–90 (2019)

    Article  Google Scholar 

  45. Djenouri, D., et al.: Machine learning for smart building applications: review and taxonomy. ACM Comput. Surv. 52(2) (2019)

    Article  Google Scholar 

  46. Hribar, R., et al.: A comparison of models for forecasting the residential natural gas demand of an urban area. Energy, 511–522 (2019)

    Article  Google Scholar 

  47. Singaravel, S., Suykens, J., Geyer, P.: Deep-learning neural-network architectures and methods: using component-based models in building-design energy prediction. Adv. Eng. Inform. 38, 81–90 (2018)

    Article  Google Scholar 

  48. Ahmad, T., et al.: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review. Energy Build. 165, 301–320 (2018)

    Article  Google Scholar 

  49. Raza, M.Q., Nadarajah, M., Ekanayake, C.: Demand forecast of PV integrated bioclimatic buildings using ensemble framework. Appl. Energy 208, 1626–1638 (2017)

    Article  Google Scholar 

  50. Sharif, S.A., Hammad, A.: Developing surrogate ANN for selecting near-optimal building energy renovation methods considering energy consumption, LCC and LCA. J. Build. Eng. 25 (2019)

    Article  Google Scholar 

  51. Chammas, M., Makhoul, A., Demerjian, J.: An efficient data model for energy prediction using wireless sensors. Comput. Electr. Eng. 76, 249–257 (2019)

    Article  Google Scholar 

  52. Fenza, G., Gallo, M., Loia, V.: Drift-aware methodology for anomaly detection in smart grid. IEEE Access 7, 9645–9657 (2019)

    Article  Google Scholar 

  53. Almalaq, A., Zhang, J.J.: Evolutionary deep learning-based energy consumption prediction for buildings. IEEE Access 7, 1520–1531 (2019)

    Article  Google Scholar 

  54. Chou, J.S., Tran, D.S.: Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy, 709–726 (2018)

    Article  Google Scholar 

  55. Koschwitz, D., Frisch, J., van Treeck, C.: Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX recurrent neural network: a comparative study on district scale. Energy 165, 134–142 (2018)

    Article  Google Scholar 

  56. Ardabili, S., Mosavi, A., Mahmoudi, Mesri Gundoshmian, T, Nosratabadi, S., Var-konyi-Koczy, A.: Modelling temperature variation of mushroom growing hall us-ing artificial neural networks (2019)

    Google Scholar 

  57. Mesri Gundoshmian, T., Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Prediction of combine harvester performance using hybrid machine learning modeling and re-sponse surface methodology (2019)

    Google Scholar 

  58. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Systematic review of deep learning and machine learning models in biofuels research (2019)

    Google Scholar 

  59. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Advances in machine learning model-ing reviewing hybrid and ensemble methods (2019)

    Google Scholar 

  60. Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Building energy information: demand and consumption prediction with machine learning models for sustainable and smart cities (2019)

    Google Scholar 

  61. Ardabili, S., Mosavi, A., Dehghani, M., Varkonyi-Koczy, A.: Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review (2019)

    Google Scholar 

  62. Mohammadzadeh D., Karballaeezadeh, N., Mohemmi, M., Mosavi, A., Varkonyi-Koczy A.: Urban train soil-structure interaction modeling and analysis (2019)

    Google Scholar 

  63. Mosavi, A., Ardabili, S., Varkonyi-Koczy, A.: List of deep learning models (2019)

    Google Scholar 

  64. Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F.: State of the art sur-vey of deep learning and machine learning models for smart cities and urban sustainability (2019)

    Google Scholar 

Download references

Acknowledgments

This publication has been supported by the Project: “Support of research and development activities of the J. Selye University in the field of Digital Slovakia and creative industry” of the Research & Innovation Operational Programme (ITMS code: NFP313010T504) co-funded by the European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mosavi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ardabili, S., Mosavi, A., Várkonyi-Kóczy, A.R. (2020). Building Energy Information: Demand and Consumption Prediction with Machine Learning Models for Sustainable and Smart Cities. In: Várkonyi-Kóczy, A. (eds) Engineering for Sustainable Future. INTER-ACADEMIA 2019. Lecture Notes in Networks and Systems, vol 101. Springer, Cham. https://doi.org/10.1007/978-3-030-36841-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36841-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36840-1

  • Online ISBN: 978-3-030-36841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics