Abstract
Floating centroid method (FCM) offers an efficient way to solve a fixed-centroid problem for the neural network classifiers. However, evolutionary computation as its optimization method restrains the FCM to achieve satisfactory performance for different neural network structures, because of the high computational complexity and inefficiency. Traditional gradient-based methods have been extensively adopted to optimize the neural network classifiers. In this study, a gradient-based floating centroid (GDFC) method is introduced to address the fixed centroid problem for the neural network classifiers optimized by gradient-based methods. Furthermore, a new loss function for optimizing GDFC is introduced. The experimental results display that GDFC obtains promising classification performance than the comparison methods on the benchmark datasets.
Keywords
- Neural network classifier
- Classification
- Loss function
- Floating Centroid Method
M. Islam and S. Liu—Both authors contribute equally to this article.
This is a preview of subscription content, access via your institution.
Buying options

References
Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Soulié, F.F., Hérault, J. (eds.) Neurocomputing. NATO ASI Series, vol. 68, pp. 227–236. Springer, Heidelberg (1990). https://doi.org/10.1007/978-3-642-76153-9_28
Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Int. Res. 2(1), 263–286 (1995)
Jiang, G., He, H., Yan, J., Xie, P.: Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox. IEEE Trans. Ind. Electron. PP, 1 (2018)
Kamilaris, A., Prenafeta-Bold, F.X.: A review of the use of convolutional neural networks in agriculture. J. Agric. Sci. 156(3), 312–322 (2018). https://doi.org/10.1017/S0021859618000436
Nazari, M., Oroojlooy, A., Snyder, L., Takac, M.: Reinforcement learning for solving the vehicle routing problem. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 9839–9849. Curran Associates, Inc. (2018)
Wang, L., Yang, B., Chen, Y., Zhang, X., Orchard, J.: Improving neural-network classifiers using nearest neighbor partitioning. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2255–2267 (2017)
Wang, L., et al.: Improvement of neural network classifier using floating centroids. Knowl. Inf. Syst. 31(3), 433–454 (2012)
Wang, L., Yang, B., Chen, Z., Abraham, A., Peng, L.: A novel improvement of neural network classification using further division of partition space. In: Mira, J., Álvarez, J.R. (eds.) IWINAC 2007. LNCS, vol. 4527, pp. 214–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73053-8_21
Wibowo, A., Wiryawan, P.W., Nuqoyati, N.I.: Optimization of neural network for cancer microRNA biomarkers classification. J. Phys: Conf. Ser. 1217, 012124 (2019)
Wong, Y.J., Arumugasamy, S.K., Jewaratnam, J.: Performance comparison of feedforward neural network training algorithms in modeling for synthesis of polycaprolactone via biopolymerization. Clean Technol. Environ. Policy 20(9), 1971–1986 (2018)
Acknowledgements
This work was supported by National Natural Science Foundation of China under Grant No. 61872419, No. 61573166, No. 61572230, No. 61873324, No. 81671785, No. 61672262. Shandong Provincial Natural Science Foundation No. ZR2019MF040, No. ZR2018LF005. Shandong Provincial Key R&D Program under Grant No. 2019GGX101041, No. 2018GGX101048, No. 2016ZDJS01A12, No. 2016GGX101001, No. 2017CXZC1206. Taishan Scholar Project of Shandong Province, China, under Grant No. tsqn201812077.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Islam, M., Liu, S., Zhang, X., Wang, L. (2019). Improving Neural Network Classifier Using Gradient-Based Floating Centroid Method. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Communications in Computer and Information Science, vol 1143. Springer, Cham. https://doi.org/10.1007/978-3-030-36802-9_45
Download citation
DOI: https://doi.org/10.1007/978-3-030-36802-9_45
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-36801-2
Online ISBN: 978-3-030-36802-9
eBook Packages: Computer ScienceComputer Science (R0)