Advertisement

3D Objects Learning and Recognition Using Boosted-SVM Algorithm

  • Youness AbouqoraEmail author
  • Omar Herouane
  • Lahcen Moumoun
  • Taoufiq Gadi
Conference paper
  • 525 Downloads
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)

Abstract

3D object recognition is one of the most challenging tasks facing artificial systems. Thus, the ability to detect and localize the regions of interest is necessary to provide an enhanced searching and visualisation beyond a simple high-level categorisation. Recently, many approaches based on 3D objects learning have been proposed, they rely on learning objects characteristics from fully labelled 3D objects. However, such data training steps are difficult to be acquired at scale. In this paper we explore machine learning techniques to recognize objects, based on local parts, from a data base. The idea behind our approach is to compute and label the quantized local descriptor around 3D interest points using both intuitive geometric and spatial properties and an effective supervised classifier, named respectively Tri Spin Image and boosted-SVM classifier. First, we extract the salient points using Harris3D then the significant and robust feature vectors representing the keypoints are computed then quantized using bag of features. Second, we use these vectors to train a boosted-SVM classifier. The performance of the proposed method is evaluated and proves encouraging results.

Keywords

3D object recognition Computer vision 3D keypoint detector 3D local descriptor Spin image Bag of features Boosted SVM Confusion matrix F1 metric 

References

  1. 1.
    Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. Comput. Graph. Forum 30(6), 1681–1707 (2011)CrossRefGoogle Scholar
  2. 2.
    Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31(4), 30 (2012). (Proc. SIGGRAPH)CrossRefGoogle Scholar
  3. 3.
    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J.: 3D object recognition in cluttered scenes with local surface features: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 36(11), 2270–2287 (2014)CrossRefGoogle Scholar
  4. 4.
    Corman, É., Ovsjanikov, M., Chambolle, A.: Supervised descriptor learning for non-rigid shape matching. In: European Conference on Computer Vision (ECCV), pp. 283–298. Springer, Cham (2014)CrossRefGoogle Scholar
  5. 5.
    Cosmo, L., Rodola, E., Masci, J., Torsello, A., Bronstein, M.M.: Matching deformable objects in clutter. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 1–10. IEEE (2016)Google Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M.M., Guibas, L.J., Ovsjanikov, M.: Shape google: geometric words and expressions for invariant shape retrieval. ACM Trans. Graph. 30(1), 1 (2011)CrossRefGoogle Scholar
  7. 7.
    Lian, Z., Godil, A., Bustos, B., Daoudi, M., Hermans, J., Kawamura, S., Kurita, Y., Lavoué, G., Van Nguyen, H., Ohbuchi, R., et al.: A comparison of methods for non-rigid 3D shape retrieval. Pattern Recogn. 46(1), 449–461 (2013)CrossRefGoogle Scholar
  8. 8.
    Shah, S.A.A., Bennamoun, M., Boussaid, F.: A novel 3D vorticity based approach for automatic registration of low resolution range images. Pattern Recogn. 48(9), 2859–2871 (2015)CrossRefGoogle Scholar
  9. 9.
    Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans. Pattern Anal. Mach. Intell 21(5), 433–449 (1999)CrossRefGoogle Scholar
  10. 10.
    Gal, R., Cohen-Or, D.: Salient geometric features for partial shape matching and similarity. ACM Trans. Graph. 25(1), 130–150 (2006)CrossRefGoogle Scholar
  11. 11.
    Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multiscale signature based on heat diffusion. Comput. Graph. Forum 28(5), 1383–1392 (2009). (Proc. SGP)CrossRefGoogle Scholar
  12. 12.
    Guo, Y., Sohel, F.A., Bennamoun, M., Lu, M., Wan, J.: TriSI: a distinctive local surface descriptor for 3D modeling and object recognition. In: GRAPP/IVAPP, pp. 86–93 (2013)Google Scholar
  13. 13.
    Guo, Y., Sohel, F., Bennamoun, M., Lu, M., Wan, J.: Rotational projection statistics for 3D local surface description and object recognition. Int. J. Comput. Vis. 105(1), 63–86 (2013)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Yang, J., Cao, Z., Zhang, Q.: A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 346–347, 163–179 (2016)CrossRefGoogle Scholar
  15. 15.
    Salti, S., Tombari, F., Di Stefano, L.: SHOT: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst. 125, 251–264 (2014)CrossRefGoogle Scholar
  16. 16.
    Yang, J., Zhang, Q., Xiao, Y., Cao, Z.: TOLDI: an effective and robust approach for 3D local shape description. Pattern Recogn. 65, 175–187 (2017)CrossRefGoogle Scholar
  17. 17.
    Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive per-formance evaluation of 3D local feature descriptors. Int. J. Comput. Vis. 116(1), 66–89 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Harris, C.G., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, Manchester, Britain, pp. 10–5244 (1988)Google Scholar
  19. 19.
    Godil, A., Wagan, A.I.: Salient local 3D features for 3D shape retrieval. In: Three-Dimensional Imaging, Interaction, and Measurement. International Society for Optics and Photonics, vol. 7864, p. 78640S (2011)Google Scholar
  20. 20.
    Sipiran, I., Bustos, B.: Harris 3D: a robust extension of the Harris operator for interest point detection on 3D meshes. Vis. Comput. 11(27), 963 (2011)CrossRefGoogle Scholar
  21. 21.
    Dutagaci, H., Cheung, C.P., Godil, A.: Evaluation of 3D interest point detection techniques via human-generated ground truth. Vis. Comput. 9(28), 901–917 (2012)CrossRefGoogle Scholar
  22. 22.
    Pratikakis, I., Spagnuolo, M., Theoharis, T., Veltkamp, R.: A robust 3D interest points detector based on harris operator. In: Eurographics workshop on 3D object retrieval, vol. 5 (2010)Google Scholar
  23. 23.
    Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3D object retrieval from cluttered scenes. Int. J. Comput. Vis. 89(2–3), 348–361 (2010)CrossRefGoogle Scholar
  24. 24.
    Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: 10th European Conference on Machine Learning, ECML 1998, pp. 137–142 (1998)CrossRefGoogle Scholar
  25. 25.
    Zaharia, T., Preteux, F.: Shape-based retrieval of 3D mesh models. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2002), Lausanne, Switzerland, pp. 437–440 (2002)Google Scholar
  26. 26.
    Koenderink, J.J., van Doorn, A.J.: Surface shape and curvature scales. Image Vis. Comput. 8(10), 557–564 (1992)CrossRefGoogle Scholar
  27. 27.
    Lodhi, R.S., Shrivastava, S.K.: Evaluation of support vector machines using kernels for object detection in images. Int. J. Eng. Res. Appl. (IJERA) 2, 269–273 (2012)Google Scholar
  28. 28.
    Scholkopf, B., Sung, K.K., Burges, C.J., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans. Signal Process. 45(11), 2758–2765 (1997)CrossRefGoogle Scholar
  29. 29.
    Herouane, O., Moumoun, L., Gadi, T., Chahhou, M.: A hybrid boosted-SVM classifier for recognizing parts of 3D objects. Int. J. Intell. Eng. Syst. 2(11), 102–110 (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Youness Abouqora
    • 1
    Email author
  • Omar Herouane
    • 1
  • Lahcen Moumoun
    • 1
  • Taoufiq Gadi
    • 1
  1. 1.Laboratory of Informatics, Imaging, and Modeling of Complex Systems (LIIMSC), Faculty of Sciences and TechniquesHassan 1st UniversitySettatMorocco

Personalised recommendations