Modeling the Acceptance of the E-Orientation Systems by Using the Predictions Algorithms

  • Rachida IhyaEmail author
  • Abdelwahed Namir
  • Sanaa Elfilali
  • Fatima Zahra Guerss
  • Mohammed Ait Daoud
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)


Our research work addresses the problem of educational and vocational orientation. Thus, the aims of this study is to set up a prediction model of the acceptance of the E-orientation system “” by users. We will determinate the factors related to the leads educational and professional orientation of the students. We established a qualitative questionnaire based in TAM theoretical model, sharing with social networks, SMS sending, individual interviews in collaborations with the experts in the field of orientation. After we collected the feedback from our study sample, we use the information gain attribute to reduce our data and we apply applied and compare several predictive Machine Learning algorithms to select the best one with the highest accuracy.


E-orientation TAM Machine learning Accuracy 


  1. 1.
    Guerss, F., et al.: Towards a new ontology of the Moroccan Post-baccalaureate learner profile for the E-orientation system “MMSyOrientation” (2015)Google Scholar
  2. 2.
    Orientation chabab. Accessed 04 Feb 2018
  3. 3.
    Ma, C., Zhang, H.H., Wang, X.: Machine learning for big data analytics in plants. Trends Plant Sci. 19(12), 798–808 (2014)CrossRefGoogle Scholar
  4. 4.
    Davis, F.D.: A technology acceptance model for empirically testing new end-user information systems: theory and results. Dissertation Massachusetts Institute of Technology (1985)Google Scholar
  5. 5.
    Hall, M., et al.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newslett. 11(1), 10–18 (2009)CrossRefGoogle Scholar
  6. 6.
    Chinnaswamy, A., Srinivasan, R.: Performance analysis of classifiers on filter-based feature selection approaches on microarray data. In: Bio-Inspired Computing for Information Retrieval Applications, pp. 41–70. IGI Global (2017)Google Scholar
  7. 7.
    Novaković, J.: Toward optimal feature selection using ranking methods and classification algorithms. Yugoslav J. Oper. Res. 21(1), 119–135 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aggarwal, C.C. (ed.): Data Classification: Algorithms and Applications. CRC Press, Boca Raton (2014)Google Scholar
  9. 9.
    Korting, T.S.: C4. 5 algorithm and multivariate decision trees. Image Processing Division, National Institute for Space Research–INPE Sao Jose dos Campos–SP, Brazil (2006)Google Scholar
  10. 10.
    Landwehr, N., Hall, M., Frank, E.: Logistic model trees. Mach. Learn. 59(1–2), 161–205 (2005)CrossRefGoogle Scholar
  11. 11.
    Zhang, H.: The optimality of Naive Bayes. AA 1(2), 3 (2004)Google Scholar
  12. 12.
    Cao, L.J., et al.: Parallel sequential minimal optimization for the training of support vector machines. IEEE Trans. Neural Netw. 17(4), 1039–1049 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rakotomalala, R.: Pratique de la régression logistique. Régression Logistique Binaire et Polytomique, Université Lumière Lyon 2, 258p (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rachida Ihya
    • 1
    Email author
  • Abdelwahed Namir
    • 1
  • Sanaa Elfilali
    • 1
  • Fatima Zahra Guerss
    • 2
  • Mohammed Ait Daoud
    • 1
  1. 1.Laboratory of Information Technologies and Modeling, Department of Mathematics and Computer Science, Faculty of Sciences Ben M’SikUniversity Hassan II of CasablancaCasablancaMorocco
  2. 2.Computer Laboratory of Mohammedia, Computer Sciences Department, Faculty of Sciences and Technicals MohammediaUniversity Hassan II of CasablancaCasablancaMorocco

Personalised recommendations