A Comparative Study of Feature Selection Methods for Informal Arabic

  • Soukaina MihiEmail author
  • Brahim Ait Ben Ali
  • Ismail El Bazi
  • Sara Arezki
  • Nabil Laachfoubi
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)


The advent of web 2.0 and new Big Data technologies has created a diversity of data and information that can be used in many fields of application. The case of opinion mining is of increasing interest to researchers because of its impact on policy, marketing, etc. Through this document, we are interested in the study of sentiments more specifically in informal Arabic. We present a new approach of processing and analysis that is improved through feature selection methods. The experiments we have carried out are based on the comparison of 3 feature selection methods combined with several machine learning algorithms applied on a twitter dataset. Our paper reports the enhanced results (Accuracy of 98%) and shows the importance of feature selection for Arabic Sentiment Analysis.


Sentiment analysis Informal Arabic NLP Feature selection Classification Polarity Social media 


  1. 1.
    Arab Social Media Report: Social Media and the Internet of Things-Towards Data-Driven Policymaking in the Arab World: Potential, Limits and Concerns, 7th edn, p. 88 (2017)Google Scholar
  2. 2.
    Korayem, M., Crandall, D., Abdul-mageed, M.: Advanced Machine Learning Technologies and Applications, May 2014, vol. 322, pp. 0–10 (2012)Google Scholar
  3. 3.
    Duwairi, R.M., Qarqaz, I.: Arabic sentiment analysis using supervised classification. In: Proceedings - 2014 International Conference Future Internet Things Cloud, FiCloud 2014, no. August, pp. 579–583 (2014)Google Scholar
  4. 4.
    Mustafa, H.H., Mohamed, A., Elzanfaly, D.S.: An enhanced approach for arabic sentiment analysis. Int. J. Artif. Intell. Appl. 8(5), 01–14 (2017)Google Scholar
  5. 5.
    Ahmad, M., Ahmad, M., Aftab, S., Ali, I., Hameed, N.: Hybrid tools and techniques for sentiment analysis : a review, no. July, pp. 28–33 (2017)Google Scholar
  6. 6.
    Mäntylä, M.V., Graziotin, D., Kuutila, M.: The evolution of sentiment analysis—a review of research topics, venues, and top cited papers. Comput. Sci. Rev. 27, 16–32 (2018)CrossRefGoogle Scholar
  7. 7.
    Assiri, A., Emam, A., Aldossari, H.: Arabic sentiment analysis: a survey. Int. J. Adv. Comput. Sci. Appl. 6(12), 75–85 (2016)Google Scholar
  8. 8.
    Nabil, M., Aly, M., Atiya, A.: ASTD: arabic sentiment tweets dataset, no. September, pp. 2515–2519 (2015)Google Scholar
  9. 9.
    Altowayan, A.A., Tao, L.: Word embeddings for Arabic sentiment analysis. In: Proceedings - 2016 IEEE International Conference Big Data, Big Data 2016, pp. 3820–3825 (2016)Google Scholar
  10. 10.
    Abdulla, N.A., Ahmed, N.A., Shehab, M.A., Al-ayyoub, M.: Arabic sentiment analysis. In: Jordan Conference on Applied Electrical Engineering Computing Technologies, vol. 6, no. 12, pp. 1–6 (2013)Google Scholar
  11. 11.
    Alayba, A.M., Palade, V., England, M., Iqbal, R.: Improving sentiment analysis in arabic using word representation. In: 2nd IEEE International Workshop on Arabic Derivated Script Analysis Recognition, ASAR 2018, pp. 13–18 (2018)Google Scholar
  12. 12.
    Heikal, M., Torki, M., El-Makky, N.: Sentiment Analysis of Arabic Tweets using Deep Learning. Procedia Comput. Sci. 142, 114–122 (2018)CrossRefGoogle Scholar
  13. 13.
    Duwairi, R.M., Marji, R., Sha’Ban, N., Rushaidat, S.: Sentiment analysis in arabic tweets. In: 2014 5th International Conference Information Communication System ICICS 2014, no. April (2014)Google Scholar
  14. 14.
    Al-harbi, O.: A comparative study of feature selection methods for dialectal arabic sentiment classification using support vector machine, vol. 19, no. 1, pp. 167–176 (2019)Google Scholar
  15. 15.
    Agarwal, B., Mittal, N.: LNCS 7817 - Optimal Feature Selection for Sentiment Analysis, pp. 13–24 (2013)CrossRefGoogle Scholar
  16. 16.
    Savoy, O.: Feature Selection in Sentiment Analysis. Proc. CORIA, no. January, pp. 273–284 (2012)Google Scholar
  17. 17.
    Chang, G., Huo, H.: A method of fine-grained short text sentiment analysis based on machine learning. Neural Netw. World 28(4), 325–344 (2018)CrossRefGoogle Scholar
  18. 18.
    Asim, M.N., Wasim, M., Ali, M.S., Rehman, A.: Comparison of feature selection methods in text classification on highly skewed datasets. In: 2017 1st International Conference Latest Trends Electrical Engineering and Computing Technologies INTELLECT 2017, vol. 2018-Janua, no. May 2018, pp. 1–8 (2018)Google Scholar
  19. 19.
    Yang, Y., Pedersen, J.O.: Comparative study on feature selection methods in text categorization, 2554Google Scholar
  20. 20.
    Kim, H.: Rde-39–74, vol. 7658, pp. 74–77 (2014)Google Scholar
  21. 21.
    Zerrouki‏, T.: Pyarabic, An Arabic language library for Python (2010).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Soukaina Mihi
    • 1
    Email author
  • Brahim Ait Ben Ali
    • 1
  • Ismail El Bazi
    • 1
  • Sara Arezki
    • 1
  • Nabil Laachfoubi
    • 1
  1. 1.Faculty of Science and Technology, IR2M LaboratoryHassan 1st UniversitySettatMorocco

Personalised recommendations