Advertisement

Sentiment Analysis on Twitter to Measure the Perception of Taxation in Colombia

  • Mónica Katherine Durán-VacaEmail author
  • Javier Antonio Ballesteros-RicaurteEmail author
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)

Abstract

Twitter is a social microblogging tool in which users can publish textual content up to 280 characters. Since its birth in 2006, Twitter has become one of the most widely used platforms for sharing current content, such as news or events in real-time, which also allows you to briefly and concisely comment on virtually any topic. This research presents the analysis of public opinion feelings about taxes on digital platforms to support the decision making of the National Taxes and Customs Office (DIAN), and the Ministry of Finance, for which an extraction and compilation of tweet data is developed, a preprocessing of information in order to obtain a corpus in Spanish that can be classified into positive, negative and neutral categories; then learning algorithms are tested, which allow training models to subsequently classify new collected tweets.

Keywords

Twitter Text mining Sentiment analysis Supervised learning 

References

  1. 1.
    Incp, Instituto Nacional de Contadores Públicos, 2019. https://www.incp.org.co/iva-plataformas-digitales-servicios-internacionales-costos-se-incrementaran-19/. Accessed 29 June 2019
  2. 2.
    López, N., Sandoval, I.: Métodos y Técnicas de investigación Cualitativa y Cuantitativa en Geografía (2014)Google Scholar
  3. 3.
  4. 4.
    Baviera, T.: Técnicas para el análisis del sentimiento en Twitter : Aprendizaje Automático Supervisado y SentiStrength Tecnhiques for sentiment analysis in Twitter : Supervised Learning and SentiStrength, Rev. Dígitos 1.3, June, pp. 33–50 (2016)Google Scholar
  5. 5.
    Dubiau, L., Ale, J.M.: Análisis de Sentimientos sobre un Corpus en Español: Experimentación con un Caso de Estudio. In: 14th Argentine Symposium on Artificial Intelligence, ASAI 2013, pp. 36–47 (2013)Google Scholar
  6. 6.
    Farzindar, A., Inkpen, D.: Natural Language Processing for Social, no. 483. Toronto: Morgan & Claypool (2015)Google Scholar
  7. 7.
    Mena-Maldonado, E., Sinnott, R., Tenemaza, M.: Study of the viability of using twitter sentiment analysis in the hotel industry. In: ICT, Society, and Human Beings, Web Based Communities and Social Media, pp. 13–19 (2016)Google Scholar
  8. 8.
    Abdullah, K.A., Folorunso, S.O., Solanke, O.O., Sodimu, S.M.: A predictive model for tweet sentiment analysis and classification. Anale. Ser. Inform., 16XVI (2018)Google Scholar
  9. 9.
    Hasan, A., Moin, S., Karim, A., Shamshirband, S.: Machine learning-based sentiment analysis for Twitter accounts. Math. Comput. Appl. 23(1), 11 (2018)Google Scholar
  10. 10.
    Chikersal, P., Poria, S., Cambria, E., Gelbukh, A., Siong, C.: Computational linguistics and intelligent text processing. In: 16th International Conference, CICLing 2015 Cairo, Egypt, 2015, vol. 9042, pp. 49–65 (2015)Google Scholar
  11. 11.
    Cambria, E., Grassi, M., Hussain, A., Havasi, C.: Sentic computing for social media marketing. Multimed. Tools Appl. 59(2), 557–577 (2012)CrossRefGoogle Scholar
  12. 12.
    Satapathy, R., Guerreiro, C., Chaturvedi, I., Cambria, E.: Phonetic-based microtext normalization for Twitter sentiment analysis. In: IEEE International Conference on Data Mining Workshops, ICDMW, vol. 2017, pp. 407–413 (2017)Google Scholar
  13. 13.
    Mahadzir, N.H., Omar, M.F., Nawi, M.N.M.: A sentiment analysis visualization system for the property industry. Int. J. Technol. 9(8), 1609–1617 (2018)CrossRefGoogle Scholar
  14. 14.
    Pulse, G.: United Nations Global Pulse (2019). https://www.unglobalpulse.org. Accessed 30 June 2019
  15. 15.
    Rane, A., Kumar, A.: Sentiment classification system of Twitter data for US airline service analysis. Proc. Int. Comput. Soft. Appl. Conf. 1, 769–773 (2018)Google Scholar
  16. 16.
    Hegde, Y., Padma, S.: Sentiment analysis using random forest ensemble for mobile product reviews in kannada. In: 2017 IEEE 7th International Advance Computing Congerence (2017)Google Scholar
  17. 17.
    Barnaghi, P., Ghaffari, P., Breslin, J.G.: Opinion mining and sentiment polarity on twitter and correlation between events and sentiment. In: IEEE 2nd International Conference on Big Data Computing Service and Applications, BigDataService 2016, pp. 52–57 (2016)Google Scholar
  18. 18.
    Abd El-Jawad, M.H., Hodhod, R., Omar, Y.M.K.: Sentiment analysis of social media networks using machine learning. In: ICENCO 2018 - 14th International Computer Engineering Conference Security Smart Soceity, pp. 174–176 (2019)Google Scholar
  19. 19.
    Heimerl, F., Lohmann, S., Lange, S., Ertl, T.: Word cloud explorer: text analytics based on word clouds. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 1833–1842 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Escuela de Ingeniería de Sistemas y ComputaciónUniversidad Pedagógica y Tecnológica de Colombia - UptcTunjaColombia

Personalised recommendations