Skip to main content

Recovery of Strategic Materials from Canadian Bauxite Residue by Smelting Followed by Acid Baking–Water Leaching

  • Conference paper
  • First Online:
Rare Metal Technology 2020

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Abstract

Sustainable sourcing of raw materials is becoming an increasingly important factor to consider in the modern economic and technological landscape. The valorization of bauxite residue , a by-product of the Bayer process for alumina production, offers an opportunity to use a material commonly considered to be a waste stream as an abundant and readily available resource. In this study, a two-step process was developed to extract valuable materials from bauxite residue , employing carbothermic smelting , producing crude metallic iron and a slag phase which concentrates scandium , and other elements of interest, which are then extracted by acid baking–water leaching . Preliminary process tests were carried out, and fundamental investigation and characterizations were used to gain an understanding of the underlying physicochemical mechanisms. This waste valorization process is intended to be integrated into a larger near-zero-waste process to sustainably recover the valuable components of bauxite residue to help build the circular economy .

G.A. conceived and supervised the research. J.A. designed and performed the experiments, analyzed/interpreted the results, and drafted the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The International Aluminium Institute (2019) Primary aluminium production—global data for Jan 1973 to Jan 2019

    Google Scholar 

  2. Evans K (2016) J Sustain Metall 2:316

    Article  Google Scholar 

  3. Anawati J, Azimi G (2019) Waste Manag 95:549

    Article  CAS  Google Scholar 

  4. Liu Y, Naidu R (2014) Waste Manag 34:2662

    Article  CAS  Google Scholar 

  5. U.S. Geological Survey (2019) Mineral commodity summaries

    Google Scholar 

  6. Røyset J, Ryum N (2005) Int Mater Rev 50:19

    Article  Google Scholar 

  7. Shaoquan X, Suqing L (1996) Hydrometallurgy 42:337

    Article  Google Scholar 

  8. Liu Z, Li H (2015) Hydrometallurgy 155:29

    Article  CAS  Google Scholar 

  9. Borra CR, Blanpain B, Pontikes Y, Binnemans K, Van Gerven T (2016) J Sustain Metall 2:365

    Article  Google Scholar 

  10. Binnemans K, Jones PT, Blanpain B, Van Gerven T, Pontikes Y (2015) J Clean Prod 99:17

    Article  CAS  Google Scholar 

  11. Yagmurlu B, Dittrich C, Friedrich B (2017) J Sustain Metall 3:90

    Article  Google Scholar 

  12. Rivera RM, Ulenaers B, Ounoughene G, Binnemans K, Van Gerven T (2018) Miner Eng 119:82

    Article  CAS  Google Scholar 

  13. Qu Y, Lian B (2013) Bioresour Technol 136:16

    Article  CAS  Google Scholar 

  14. Borra CR, Mermans J, Blanpain B, Pontikes Y, Binnemans K, Van Gerven T (2016) Miner Eng 92:151

    Article  CAS  Google Scholar 

  15. Davris P, Balomenos E, Panias D, Paspaliaris I (2016) Hydrometallurgy 164:125

    Article  CAS  Google Scholar 

  16. Yatsenko SP, Pyagai IN (2010) Theor Found Chem Eng 44:563

    Article  CAS  Google Scholar 

  17. Borra CR, Pontikes Y, Binnemans K, Van Gerven T (2015) Miner Eng 76:20

    Article  CAS  Google Scholar 

  18. Borra CR, Blanpain B, Pontikes Y, Binnemans K, Van Gerven T (2016) J Sustain Metall 2:28

    Article  Google Scholar 

  19. Kaußen F, Friedrich B (2015) Chem-Ing-Tech 87:1535

    Article  Google Scholar 

  20. Alkan G, Yagmurlu B, Ma Y, Xakalashe B, Stopic S, Dittrich C, Friedrich B (2018) In: Pontikes Y (ed) Proceedings of 2nd international bauxite residue valorisation and best practices conference, Athens, pp 215–222

    Google Scholar 

  21. Balomnenos E, Kastritis D, Panias D, Paspaliaris I, Boufounos D (2014) Light Met 2014:143

    Google Scholar 

  22. He A, Zeng J (2017) Mater Des 115:433

    Article  CAS  Google Scholar 

  23. Lucas H, Alkan G, Xakalashe B, Friedrich B (2018) In: Proceedings of 2nd international bauxite residue valorisation and best practices conference, pp 263–270

    Google Scholar 

  24. Xakalashe B, Friedrich B (2018) In: Proceedings 2nd international bauxite residue valorisation and best practices conference, pp 233–240

    Google Scholar 

  25. Yagmurlu B, Alkan G, Xakalashe B, Friedrich B, Stopic S (2017) In: 35th International ICSOBA Conference Hamburg, Germany, 2–5 October, 2017, p 587

    Google Scholar 

  26. Brewer L, Margrave J (1955) J Phys Chem 59:421

    Article  CAS  Google Scholar 

  27. Vind J, Malfliet A, Bonomi C, Paiste P, Sajó IE, Blanpain B, Tkaczyk AH, Vassiliadou V, Panias D (2018) Miner Eng 123:35

    Article  CAS  Google Scholar 

  28. Liu Z, Zong Y, Li H, Zhao Z (2018) Miner Eng 119:263

    Article  CAS  Google Scholar 

  29. Terry B (1983) Hydrometallurgy 10:135

    Article  CAS  Google Scholar 

  30. Huang Y-J, Chiu H-T, Lee C-Y (2009) CrystEngComm 11:1904

    Article  CAS  Google Scholar 

  31. Chen T, Zheng Y, Lu Z, Xu T, Liu Y, Meng X, Xu G, Han G (2019) Nanotechnology 1

    Google Scholar 

  32. Bose S (2007) High temperature coatings. Elsevier, pp 29–52

    Google Scholar 

  33. Murray JL (1981) Bull Alloy Phase Diagr 2:320

    Article  Google Scholar 

  34. Azimi G, Papangelakis VG, Dutrizac JE (2007) Fluid Phase Equilib 260:300

    Article  CAS  Google Scholar 

  35. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (2005) Handbook of mineralogy, Mineralogical Society of America

    Google Scholar 

Download references

Acknowledgements

This work was supported by Rio Tinto (grant number 503532) and Natural Sciences and Engineering Research Council of Canada (NSERC) (grant number 503534). The authors gratefully acknowledge Rio Tinto for providing us with bauxite residue samples and for technical support. We thank Dr. Raiden Acosta for help with XRD, and Alkali Fusion, and Mr. Kok Long Ng for help with SEM-EDS. Access to the electron microscopy facility in Ontario Centre for the Characterization of Advanced Materials (OCCAM) and the Walter Curlook Materials Characterization & Processing Laboratory is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gisele Azimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anawati, J., Azimi, G. (2020). Recovery of Strategic Materials from Canadian Bauxite Residue by Smelting Followed by Acid Baking–Water Leaching. In: Azimi, G., Forsberg, K., Ouchi, T., Kim, H., Alam, S., Baba, A. (eds) Rare Metal Technology 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36758-9_13

Download citation

Publish with us

Policies and ethics