Skip to main content

Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations

  • Conference paper
  • First Online:
Book cover Orthogonal Polynomials (AIMSVSW 2018)

Included in the following conference series:

Abstract

These are the lecture notes for a course on exceptional polynomials taught at the AIMS-Volkswagen Stiftung Workshop on Introduction to Orthogonal Polynomials and Applications that took place in Douala (Cameroon) from October 5–12, 2018. They summarize the basic results and construction of exceptional poynomials, developed over the past 10 years. In addition, some new results are presented on the construction of rational solutions to Painlevé equation PIV and its higher order generalizations that belong to the \(A_{2n}^{(1)}\)-Painlevé hierarchy. The construction is based on dressing chains of Schrödinger operators with potentials that are rational extensions of the harmonic oscillator. Some of the material presented here (Sturm-Liouville operators, classical orthogonal polynomials, Darboux-Crum transformations, etc.) are classical and can be found in many textbooks, while some results (genus, interlacing and cyclic Maya diagrams) are new and presented for the first time in this set of lecture notes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Solving this question is equivalent to classifying exceptional polynomials and operators, a question that we shall mention below.

  2. 2.

    In the case of an unbounded interval with a = − and/or b = +, or if solutions y(z) of (3.1) have no defined value at the endpoints, one has to consider the asymptotics of the corresponding solutions and impose boundary conditions of a more general form:

    $$\displaystyle \begin{aligned} \begin{aligned} \alpha_0(z) y(z) + \alpha_1(z) y'(z) \to 0& \quad \text{as } z\to a^{-}\\ \beta_0(z) y(z) + \beta_1(z) y'(z) \to 0& \quad \text{as } z\to b^{+} \end{aligned} \end{aligned}$$

    where α 0(z), α 1(z), β 0(z), β 1(z) are continuous functions defined on I.

  3. 3.

    A multi-set is generalization of the concept of a set that allows for multiple instances for each of its elements.

References

  1. V. È. Adler, A modification of Crum’s method. Theor. Math. Phys. 101(3), 1381–1386 (1994)

    Article  MathSciNet  Google Scholar 

  2. V. È. Adler, Nonlinear chains and Painlevé equations. Phys. D 73(4), 335–351 (1994)

    Article  MathSciNet  Google Scholar 

  3. G.E. Andrews, The Theory of Partitions (Cambridge University Press, Cambridge, 1998). MR 1634067

    Google Scholar 

  4. G.E. Andrews, K. Eriksson, Integer Partitions (Cambridge University Press, Cambridge, 2004). MR 2122332

    Google Scholar 

  5. D. Bermúdez, Complex SUSY transformations and the Painlevé IV equation. SIGMA 8, 069 (2012)

    MATH  Google Scholar 

  6. D. Bermúdez, D.J. Fernández, Complex solutions to the Painlevé IV equation through supersymmetric quantum mechanics, in AIP Conference Proceedings, vol. 1420 (AIP, College Park, 2012), pp. 47–51

    Google Scholar 

  7. N. Bonneux, A.B.J. Kuijlaars, Exceptional Laguerre polynomials. Stud. Appl. Math. (2018). https://doi.org/10.1111/sapm.12204

  8. P.A. Clarkson, Painlevé equations – nonlinear special functions. J. Comput. Appl. Math. 153(1–2), 127–140 (2003)

    Article  MathSciNet  Google Scholar 

  9. P.A. Clarkson, The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44(11), 5350–5374 (2003)

    Article  MathSciNet  Google Scholar 

  10. P.A. Clarkson, D. Gómez-Ullate, Y. Grandati, R. Milson, Rational solutions of higher order Painlevé systems I (2018). Preprint. arXiv: 1811.09274

    Google Scholar 

  11. S.Yu. Dubov, V.M. Eleonskii, N.E. Kulagin, Equidistant spectra of anharmonic oscillators. Chaos 4(1), 47–53 (1994)

    Article  MathSciNet  Google Scholar 

  12. A.J. Durán, Exceptional Meixner and Laguerre orthogonal polynomials. J. Approx. Theory 184, 176–208 (2014)

    Article  MathSciNet  Google Scholar 

  13. A.J. Durán, Exceptional Charlier and Hermite orthogonal polynomials. J. Approx. Theory 182, 29–58 (2014)

    Article  MathSciNet  Google Scholar 

  14. A.J. Durán, Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials. Integral Transforms Spec. Funct. 26(5), 357–376 (2015)

    Article  Google Scholar 

  15. A.J. Durán, Exceptional Hahn and Jacobi orthogonal polynomials. J. Approx. Theory 214, 9–48 (2017)

    Article  MathSciNet  Google Scholar 

  16. A.J. Durán, M. Pérez, Admissibility condition for exceptional Laguerre polynomials. J. Math. Anal. Appl. 424(2), 1042–1053 (2015)

    Article  MathSciNet  Google Scholar 

  17. G. Filipuk, P.A. Clarkson, The symmetric fourth Painlevé hierarchy and associated special polynomials. Stud. Appl. Math. 121(2), 157–188 (2008)

    Article  MathSciNet  Google Scholar 

  18. P.J. Forrester, N.S. Witte, Application of the τ-function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Commun. Math. Phys. 219(2), 357–398 (2001). MR 1833807

    Google Scholar 

  19. M. García-Ferrero, D. Gómez-Ullate, Oscillation theorems for the Wronskian of an arbitrary sequence of eigenfunctions of Schrödinger’s equation. Lett. Math. Phys. 105(4), 551–573 (2015)

    Article  MathSciNet  Google Scholar 

  20. M. García-Ferrero, D. Gómez-Ullate, R. Milson, A Bochner type characterization theorem for exceptional orthogonal polynomials. J. Math. Anal. Appl. 472, 584–626 (2019)

    Article  MathSciNet  Google Scholar 

  21. D. Gómez-Ullate, N. Kamran, R. Milson, Supersymmetry and algebraic Darboux transformations. J. Phys. A 37(43), 10065 (2004)

    Google Scholar 

  22. D. Gómez-Ullate, N. Kamran, R. Milson, The Darboux transformation and algebraic deformations of shape-invariant potentials. J. Phys. A 37(5), 1789 (2004)

    Google Scholar 

  23. D. Gómez-Ullate, N. Kamran, R. Milson, An extended class of orthogonal polynomials defined by a Sturm–Liouville problem. J. Math. Anal. Appl. 359(1), 352–367 (2009)

    Article  MathSciNet  Google Scholar 

  24. D. Gómez-Ullate, N. Kamran, R. Milson, An extension of Bochner’s problem: exceptional invariant subspaces. J. Approx. Theory 162(5), 987–1006 (2010)

    Article  MathSciNet  Google Scholar 

  25. D. Gómez-Ullate, N. Kamran, R. Milson, Two-step Darboux transformations and exceptional Laguerre polynomials. J. Math. Anal. Appl. 387(1), 410–418 (2012)

    Article  MathSciNet  Google Scholar 

  26. D. Gómez-Ullate, Y. Grandati, R. Milson, Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials. J. Phys. A 47(1), 015203 (2013)

    Google Scholar 

  27. D. Gómez-Ullate, N. Kamran, R. Milson, A conjecture on exceptional orthogonal polynomials. Found. Comput. Math. 13(4), 615–666 (2013)

    Article  MathSciNet  Google Scholar 

  28. D. Gómez-Ullate, Y. Grandati, R. Milson, Shape invariance and equivalence relations for pseudo-Wronskians of Laguerre and Jacobi polynomials. J. Phys. A 51(34), 345201 (2018)

    Google Scholar 

  29. D. Gómez-Ullate, Y. Grandati, R. Milson, Durfee rectangles and pseudo-Wronskian equivalences for Hermite polynomials. Stud. Appl. Math. 141(4), 596–625 (2018)

    Article  MathSciNet  Google Scholar 

  30. D. Gómez-Ullate, Y. Grandati, S. Lombardo, R. Milson, Rational solutions of dressing chains and higher order Painleve equations (2018). Preprint. arXiv:1811.10186

    Google Scholar 

  31. Y. Grandati, Solvable rational extensions of the isotonic oscillator. Ann. Phys. 326(8), 2074–2090 (2011)

    Article  MathSciNet  Google Scholar 

  32. Y. Grandati, Multistep DBT and regular rational extensions of the isotonic oscillator. Ann. Phys. 327(10), 2411–2431 (2012)

    Article  MathSciNet  Google Scholar 

  33. V.I. Gromak, I. Laine, S. Shimomura, Painlevé Differential Equations in the Complex Plane, vol. 28 (Walter de Gruyter, Berlin, 2008)

    MATH  Google Scholar 

  34. K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé II equation. J. Math. Phys. 37(9), 4693–4704 (1996)

    Article  MathSciNet  Google Scholar 

  35. K. Kajiwara, Y. Ohta, Determinant structure of the rational solutions for the Painlevé IV equation. J. Phys. A 31(10), 2431 (1998)

    Google Scholar 

  36. M.G. Krein, On a continual analogue of a Christoffel formula from the theory of orthogonal polynomials. Dokl. Akad. Nauk SSSR (N.S.) 113, 970–973 (1957). MR 0091396

    Google Scholar 

  37. A.B.J. Kuijlaars, R. Milson, Zeros of exceptional Hermite polynomials. J. Approx. Theory 200, 28–39 (2015)

    Article  MathSciNet  Google Scholar 

  38. I. Marquette, C. Quesne, New ladder operators for a rational extension of the harmonic oscillator and superintegrability of some two-dimensional systems. J. Math. Phys. 54(10), 12 pp., 102102 (2013). MR 3134580

    Google Scholar 

  39. I. Marquette, C. Quesne, Two-step rational extensions of the harmonic oscillator: exceptional orthogonal polynomials and ladder operators. J. Phys. A 46(15), 155201 (2013)

    Google Scholar 

  40. I. Marquette, C. Quesne, Connection between quantum systems involving the fourth Painlevé transcendent and k-step rational extensions of the harmonic oscillator related to Hermite exceptional orthogonal polynomial. J. Math. Phys. 57(5), 15, 052101 (2016). MR 3501792

    Google Scholar 

  41. D. Masoero, P. Roffelsen, Poles of Painlevé IV rationals and their distribution. SIGMA 14 (2018), 49, Paper No. 002. MR 3742702

    Google Scholar 

  42. T. Masuda, Y. Ohta, K. Kajiwara, A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, 1–25 (2002)

    Article  MathSciNet  Google Scholar 

  43. J. Mateo, J. Negro, Third-order differential ladder operators and supersymmetric quantum mechanics. J. Phys. A 41(4), 28, 045204 (2008). MR 2451071

    Google Scholar 

  44. K. Matsuda, Rational solutions of the Noumi and Yamada system of type \(A_4^{(1)}\). J. Math. Phys. 53(2), 023504 (2012)

    Google Scholar 

  45. Monty Python, And now for something completely different. https://www.imdb.com/title/tt0066765/

  46. M. Noumi, Painlevé Equations through Symmetry, vol. 223 (Springer Science & Business, New York, 2004)

    Book  Google Scholar 

  47. M. Noumi, Y. Yamada, Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, 53–86 (1999)

    Article  MathSciNet  Google Scholar 

  48. A.A. Oblomkov, Monodromy-free Schrödinger operators with quadratically increasing potentials. Theor. Math. Phys. 121(3), 1574–1584 (1999)

    Article  Google Scholar 

  49. S. Odake, R. Sasaki, Infinitely many shape invariant potentials and new orthogonal polynomials. Phys. Lett. B 679(4), 414–417 (2009)

    Article  MathSciNet  Google Scholar 

  50. S. Odake, R. Sasaki, Another set of infinitely many exceptional X Laguerre polynomials. Phys. Lett. B 684, 173–176 (2010)

    Article  MathSciNet  Google Scholar 

  51. S. Odake, R. Sasaki, Exactly solvable quantum mechanics and infinite families of multi-indexed orthogonal polynomials. Phys. Lett. B 702(2–3), 164–170 (2011)

    Article  MathSciNet  Google Scholar 

  52. S. Odake, R. Sasaki, Extensions of solvable potentials with finitely many discrete eigenstates. J. Phys. A 46(23), 235205 (2013)

    Google Scholar 

  53. S. Odake, R. Sasaki, Krein–Adler transformations for shape-invariant potentials and pseudo virtual states. J. Phys. A 46(24), 245201 (2013)

    Google Scholar 

  54. K. Okamoto, Studies on the Painlevé equations. III. Second and fourth Painlevé equations, P II and P IV. Math. Ann. 275(2), 221–255 (1986). MR 854008

    Google Scholar 

  55. J.B. Olsson, Combinatorics and Representations of Finite Groups. Fachbereich Mathematik [Lecture Notes in Mathematics], vol. 20 (Universität Essen, Essen, 1994)

    Google Scholar 

  56. C. Quesne, Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry. J. Phys. A Math. Theor. 41(39), 392001 (2008)

    Google Scholar 

  57. A. Sen, A.N.W. Hone, P.A. Clarkson, Darboux transformations and the symmetric fourth Painlevé equation. J. Phys. A 38(45), 9751–9764 (2005)

    Article  MathSciNet  Google Scholar 

  58. K. Takasaki, Spectral curve, Darboux coordinates and Hamiltonian structure of periodic dressing chains. Commun. Math. Phys. 241(1), 111–142 (2003)

    MATH  Google Scholar 

  59. T. Tsuda, Universal characters, integrable chains and the Painlevé equations. Adv. Math. 197(2), 587–606 (2005)

    Article  MathSciNet  Google Scholar 

  60. H. Umemura, Painlevé equations in the past 100 years. Am. Math. Soc. Transl. 204, 81–110 (2001)

    Google Scholar 

  61. W. Van Assche, Orthogonal Polynomials and Painlevé Equations. Australian Mathematical Society Lecture Series, vol. 27 (Cambridge University Press, Cambridge, 2018). MR 3729446

    Google Scholar 

  62. A.P. Veselov, A.B. Shabat, Dressing chains and the spectral theory of the Schrödinger operator. Funct. Anal. Appl. 27(2), 81–96 (1993)

    Article  MathSciNet  Google Scholar 

  63. R. Willox, J. Hietarinta, Painlevé equations from Darboux chains. I. P IIIP V. J. Phys. A 36(42), 10615–10635 (2003). MR 2024916

    Google Scholar 

Download references

Acknowledgements

The research of DGU has been supported in part by Spanish MINECO-FEDER Grants MTM2015-65888-C4-3 and MTM2015-72907-EXP, and by the ICMAT-Severo Ochoa project SEV-2015-0554. The research of RM was supported in part by NSERC grant RGPIN-228057-2009. DGU would like to thank the Volkswagen Stiftung and the African Institute of Mathematical Sciences for their hospitality during the Workshop on Introduction to Orthogonal Polynomials and Applications, Duala (Cameroon), where these lectures were first taught.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Gómez-Ullate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Ullate, D., Milson, R. (2020). Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations. In: Foupouagnigni, M., Koepf, W. (eds) Orthogonal Polynomials. AIMSVSW 2018. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-36744-2_15

Download citation

Publish with us

Policies and ethics