Skip to main content

Nanoparticles: Sources and Toxicity

  • Chapter
  • First Online:
Plant Responses to Nanomaterials

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

This review aims to present a universal base for the scientists who are willing to gain knowledge regarding sources, development, and hazardous effects of nanoparticles. Remarkable advancement in nanomaterials lead the focus into a new era in the field of biomedical engineering for its big involvement in healthcare. Due to their significant biological, physical, and chemical features, they play a key role in the innovation and expansion of technologies. These can be classified on the basis of their origin, size, shape, and composition. These particles originate from various anthropogenic activities for millions of years such as smoke from fire and lint from garments. Rapid industrialization and use of combustion-based engine in transportation enhanced the particulate pollution. Such advancement in technologies drastically altered the characteristics of particulate pollution and, therefore, induced the proportion of nanometer-sized particles to nanoparticles and expanded the diversity of chemical compositions. In this chapter, the latest studies of nanoparticle toxicity are reviewed in context with their physiochemical perceptions. Physiological interactions between nanoparticles and targeted biological areas are greatly influenced by the different physiochemical characteristics like their size, shape, occurrence, electrostatics, and surface area. Consequently, it is essential to investigate such features for the safety purpose of bio-user.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References 

  • Amaladhas TP, Sivagami S, Devi TA, Ananthi N, Velammal SP (2012) Biogenic synthesis of silver nanoparticles by leaf extract of Cassia angustifolia. Adv Nat Sci Nanosci Nanotechnol 3:045006

    Article  CAS  Google Scholar 

  • Artioli G, Angelini I, Polla A (2008) Crystals and phase transitions in protohistoric glass materials. Phase Transit 81:233–252

    Article  CAS  Google Scholar 

  • Arzt E, Enders S, Gorb SZ (2002) Towards a micromechanical understanding of biological surface devices. Meta 93:345–351

    CAS  Google Scholar 

  • Asharani PV, Lian Wu Y, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Israelachvili JN, Full RJ (2002) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci U S A 99:12252–12256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargel H, Koch K, Cerman Z, Neinhuis C (2006) Evans Review No. 3: Structure–function relationships of the plant cuticle and cuticular waxes—a smart material? Funct Plant Biol 33:893–910

    Article  CAS  PubMed  Google Scholar 

  • Becerril-Garcia HA (2007) DNA-templated nanomaterials. Ph.D. thesis, Brigham Young University, Provo, UT.

    Google Scholar 

  • Bleeker EAJ, Cassee FR, Geertsma RE, de Jong WH, Heugens EHW, Koers-Jacquemijns M, van De Meent D, Oomen AG, Popma J, Rietveld AG, Wijnhoven SWP (2012) Interpretation and implications of the European Commission’s definition on nanomaterials. RIVM letter report 601358001. RIVM, Bilthoven, Netherlands

    Google Scholar 

  • Boulenguez J, Berthier S, Leroy F (2012) Multiple scaled disorder in the photonic structure of Morpho rhetenor butterfly. Appl Phys 106:1005–1011

    Article  CAS  Google Scholar 

  • Brown JS, Zeman KL, Bennett WD (2002) Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 166:1240–1247

    Article  PubMed  Google Scholar 

  • Byun D, Hong J, Saputra Ko JH, Lee YJ, Park HC, Byun BK, Lukes JR (2009) Wetting characteristics of insect wing surfaces. J Bionic Eng 6:63–70

    Article  Google Scholar 

  • Chow TS (2007) Nanoscale surface roughness and particle adhesion on structured substrates. Nanotechnology 18:115713

    Article  CAS  Google Scholar 

  • Cong HP, Ren XC, Wang P, Yu SH (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:123–132

    Article  CAS  Google Scholar 

  • D’Silva J, van Calster G (2009) Taking temperature-a review of European Union regulation in nanomedicine. Eur J Health Law 16:249–269

    Article  PubMed  Google Scholar 

  • De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539

    Article  PubMed  CAS  Google Scholar 

  • Déry JP, Borra EF, Ritcey AM (2008) Ethylene glycol based ferrofluid for the fabrication of magnetically deformable liquid mirrors. Chem Mater 20:6420–6426

    Article  CAS  Google Scholar 

  • Ditsche-Kuru P, Barthlott W, Koop JHE (2012) At which surface roughness do claws cling? Investigations with larvae of the running water mayfly Epeorus assimilis (Heptageniidae, Ephemeroptera). Zoology 115:379–388

    Article  PubMed  Google Scholar 

  • Favi PM, Gao M, Johana Sepúlveda Arango L, Ospina SP, Morales M, Pavon JJ, Webster TJ (2015) Shape and surface effects on the cytotoxicity of nanoparticles: gold nanospheres versus gold nanostars. J Biomed Mater Res 103:3449

    Article  CAS  Google Scholar 

  • Food & Drug Administration (2011) CFR—Code of Federal Regulations Title 21

    Google Scholar 

  • Freeman CL, Harding JH, Quigley D, Rodger PM (2010) Structural control of crystal nuclei by an eggshell protein. Angew Chem Int Ed 49:5135–5137

    Article  CAS  Google Scholar 

  • Fröhlich E (2016) Cellular elimination of nanoparticles. Environ Toxicol Pharmacol 46:90–94

    Article  PubMed  CAS  Google Scholar 

  • Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16:262–271

    Article  CAS  Google Scholar 

  • Hochella MF Jr, Spencer MG, Jones KL (2015) Nanotechnology: nature’s gift or scientists’ brainchild? Environ Sci Nano 2:114–119

    Article  CAS  Google Scholar 

  • Holsapple MP, Farland WH, Landry TD, Monteiro-Riviere NA, Carter JM, Walker NJ, Thomas KV (2005) Research strategies for safety evaluation of nanomaterials, part ii: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci 88:12–17

    Article  CAS  PubMed  Google Scholar 

  • Islam NI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170

    Google Scholar 

  • ISO/TS 80004-1:2010, Nanotechnology – Vocabulary – Part 1: Core terms. International Organization for Standardization: Geneva

    Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah, MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology 9:1050–1074

    Google Scholar 

  • Johnson VR (2016) Nanotechnology, environmental risks, and regulatory options. Penn State Law Rev 121:471–503

    Google Scholar 

  • Johnson-McDaniel D, Barrett CA, Sharafi A, Salguero TT (2013) Nanoscience of an ancient pigment. J Am Ceram Soc 135:1677–1679

    CAS  Google Scholar 

  • Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051

    Article  CAS  PubMed  Google Scholar 

  • Koch K, Barthlott W (2009) Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philos Trans R Soc 367:1487–1509

    Article  CAS  Google Scholar 

  • Koul A, Kumar A, Singh VK, Tripathi DK, Mallubhotla S (2018) Exploring plant-mediated copper, iron, titanium, and cerium oxide nanoparticles and their impacts. In: Nanomaterials in plants, algae, and microorganisms. Academic Press, London/San Diego, pp 175–194

    Google Scholar 

  • Kreuter J (2007) Nanoparticles—a historical perspective. Int J Pharm 331:1–10

    Article  CAS  PubMed  Google Scholar 

  • Leonhardt U (2007) Optical metamaterials: invisibility cup. Nat Photonics 1:207–208

    Article  CAS  Google Scholar 

  • Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res 101:2424–2435

    Article  CAS  Google Scholar 

  • Linak WP, Miller CA, Wendt JOL (2000) Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil. J Air Waste Manage Assoc 50:1532–1544

    Article  CAS  Google Scholar 

  • Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH (2011) Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 8:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchant GE, Sylvester DJ, Abbott KW, Danforth TL (2009) Consuming Provence: the place of gastronomy in Provençal tourism and culture. Stud Ethics Law Technol 3:1–14

    Google Scholar 

  • Maskos M, Stauber RH (2011) 3.319 – Characterization of nanoparticles in biological environments. In: Ducheyne P (ed) Comprehensive biomaterials. Elsevier, Oxford, pp 329–339

    Chapter  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Moussian B (2010) Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem Mol Biol 40:363–375

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Nanomaterial Fact Sheet. Oakland, CA, U.S.A. (2015). https://archive.asyousow.org/wp-content/uploads/2015/03/nanomaterials-in-food-and-food-packaging-fact-sheet.pdf. Accessed 21 Sept 2016

  • Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH (2009) Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846–853

    Article  CAS  PubMed  Google Scholar 

  • Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, Sigg L, Behra R (2008) Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42:8959–8964

    Article  CAS  PubMed  Google Scholar 

  • Nguyen SH, Webb HK, Mahon PJ, Crawford RJ, Ivanova EP (2014) Natural insect and plant micro-/nanostructured surfaces: an excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules 19:13614–13630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfündel EE, Agati G, Cerovic GZ (2008) Optical properties of plant surfaces. In: Reiderer M, Mueller C (eds) Biology of the plant cuticle. Blackwell Publishing, Oxford, pp 216–239

    Google Scholar 

  • Potocnik J (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off J Eur Union 275:38–40

    Google Scholar 

  • Pratsinis H, Armatas A, Dimozi A, Lefaki M, Vassiliu P, Kletsas D (2013) Paracrine anti-fibrotic effects of neonatal cells and living cell constructs on young and senescent human dermal fibroblasts. Wound Repair Regen 21:842–851

    Article  PubMed  Google Scholar 

  • Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D’Amato M, Raggi A, Lenardi C, Milani P, Scanziani E (2016) Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 213:12

    Google Scholar 

  • Rogers F, Arnott P, Zielinska B, Sagebiel J, Kelly KE, Wagner D, Lighty JS, Sarofim AF (2005) Real-time measurements of jet aircraft engine exhaust. J Air Waste Manage Assoc 55:583–593

    Article  CAS  Google Scholar 

  • Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26:471–482

    Article  CAS  PubMed  Google Scholar 

  • Salnikov V, Lukyanenko Y, Frederick C, Lederer W, Lukyanenko V (2007) Probing the outer mitochondrial membrane in cardiac mitochondria with nanoparticles. Biophys J 92:1058–1071

    Article  CAS  PubMed  Google Scholar 

  • Sastry M, Ankamwar B, Ahmad A (2005) Biosynthesis of gold and silver nanoparticles using Emblics Officinalis fruit extract and their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 8:1435

    Google Scholar 

  • Schaming D, Remita H (2015) Nanotechnology: from the ancient time to nowadays. Found Chem 17:187–205

    Article  CAS  Google Scholar 

  • Shannahan JH, Podila R, Brown JMA (2015) Hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation. Int J Nanomedicine 10:6509–6521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles – formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423

    Google Scholar 

  • Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5:1351–1365

    Google Scholar 

  • Singh M, Manikandan S, Kumaraguru AK (2011) Nanoparticles: a new technology with wide applications. Res J Nanosci Nanotechnol 1724:020–048

    Google Scholar 

  • Sun M, Liang A, Watson GS, Watson JA, Zheng Y, Jiang L (2012) Compound microstructures and wax layer of beetle elytral surfaces and their influence on wetting properties. PLoS One 7:e46710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor AD (2002) Dust in the wind. Environ Health Perspect 110:A80

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, Hendriksen PJ, Marvin HJ, Peijnenburg AA, Bouwmeester H (2012) Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 6:7427–7442

    Article  PubMed  CAS  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner S, Gondikas A, Neubauer E, Hofmann T, Kammer VF (2014) Spot the difference: engineered and natural nanoparticles in the environment—release, behavior, and fate. Angew Chem Int Ed 53(46):12398–12419

    CAS  Google Scholar 

  • Walter P, Welcomme E, Hallégot P, Zaluzec NJ, Deeb C, Castaing J, Veyssière P, Bréniaux R, Lévêque JL, Tsoucaris G (2006) Early use of PbS nanotechnology for an ancient hair dyeing formula. Nano Lett 6:2215–2219

    Article  CAS  PubMed  Google Scholar 

  • Wang JN, Zhang YL, Liu Y, Zheng W, Lee LP, Sun HB (2015) Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale 7:7101–7114

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Sun Y, Li Z, Wu A, Wei G (2016) Bottom-up synthesis and sensor applications of biomimetic nanostructures. Materials (Basel) 9:53

    Article  CAS  Google Scholar 

  • Watson GS, Cribb BW, Watson JA (2010) How micro/nanoarchitecture facilitates anti-wetting: an elegant hierarchical design on the termite wing. ACS Nano 4:129–136

    Article  CAS  PubMed  Google Scholar 

  • Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N (2012) Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 46:2242–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson RF (2006) Nanotechnology: the challenge of regulating known unknowns. J Law Med Ethics 34:704–713

    Article  PubMed  Google Scholar 

  • Xue Y, Lv P, Lin H, Duan H (2016) Underwater superhydrophobicity: stability, design and regulation, and applications. Appl Mech Rev 68:030803–030838

    Article  Google Scholar 

  • Zang J, Ryu S, Pugno N, Wang Q, Tu Q, Buehler MJ, Zhao X (2013) Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat Mater 12:321–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YL, Xia H, Kim E, Sun HB (2012) Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter 8:11217–11231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kapoor, D., Singh, M.P. (2021). Nanoparticles: Sources and Toxicity. In: Singh, V.P., Singh, S., Tripathi, D.K., Prasad, S.M., Chauhan, D.K. (eds) Plant Responses to Nanomaterials. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-36740-4_9

Download citation

Publish with us

Policies and ethics