Skip to main content

Dynamic Neural Language Models

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Abstract

Language evolves over time with trends and shifts in technological, political, or cultural contexts. Capturing these variations is important to develop better language models. While recent works tackle temporal drifts by learning diachronic embeddings, we instead propose to integrate a temporal component into a recurrent language model. It takes the form of global latent variables, which are structured in time by a learned non-linear transition function. We perform experiments on three time-annotated corpora. Experimental results on language modeling and classification tasks show that our model performs consistently better than temporal word embedding methods in two temporal evaluation settings: prediction and modeling. Moreover, we empirically show that the system is able to predict informative latent representations in the future.

This work has been partially supported by the ANR (French National Research Agency) LOCUST project (ANR-15-CE23-0027).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supplementary material available at https://github.com/edouardelasalles/drlm/raw/master/supplementary.pdf.

  2. 2.

    Code of the models available at https://github.com/edouardelasalles/drlm.

  3. 3.

    http://labs.semanticscholar.org/corpus/.

References

  1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271 (2018)

  2. Bamler, R., Mandt, S.: Dynamic word embeddings. In: ICML (2017)

    Google Scholar 

  3. Blei, D.M., Lafferty, J.D.: Dynamic topic models. In: ICML (2006)

    Google Scholar 

  4. Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: SIGNLL (2016)

    Google Scholar 

  5. Chiu, C.C., et al.: State-of-the-art speech recognition with sequence-to-sequence models. arXiv:1712.01769 (2017)

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

  7. Eger, S., Mehler, A.: On the linearity of semantic change: investigating meaning variation via dynamic graph models. In: ACL (2016)

    Google Scholar 

  8. Fedus, W., Goodfellow, I., Dai, A.M.: MaskGAN: better text generation via filling in the \(\_\). In: ICLR (2018)

    Google Scholar 

  9. Fraccaro, M., Sønderby, S.K., Paquet, U., Winther, O.: Sequential neural models with stochastic layers. In: NeurIPS (2016)

    Google Scholar 

  10. Frermann, L., Lapata, M.: A Bayesian model of diachronic meaning change. ACL (2016)

    Google Scholar 

  11. Hamilton, W.L., Leskovec, J., Jurafsky, D.: Diachronic word embeddings reveal statistical laws of semantic change. In: ACL, vol. 1 (2016)

    Google Scholar 

  12. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  13. Howard, J., Ruder, S.: Universal language model fine-tuning for text classification. In: ACL (2018)

    Google Scholar 

  14. Iwata, T., Yamada, T., Sakurai, Y., Ueda, N.: Sequential modeling of topic dynamics with multiple timescales. ACM Trans. KDD 5, 19 (2012)

    Google Scholar 

  15. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification. arXiv:1607.01759 (2016)

  16. Kabán, A., Girolami, M.A.: A dynamic probabilistic model to visualise topic evolution in text streams. J. Intell. Inf. Syst. 18, 107–125 (2002)

    Article  Google Scholar 

  17. Kim, Y., Chiu, Y.I., Hanaki, K., Hegde, D., Petrov, S.: Temporal analysis of language through neural language models. In: ACL Workshop on Language Technologies and Computational Social Science (2014)

    Google Scholar 

  18. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)

    Google Scholar 

  19. Krishnan, R.G., Shalit, U., Sontag, D.: Structured inference networks for nonlinear state space models. In: AAAI (2017)

    Google Scholar 

  20. Kulkarni, V., Al-Rfou, R., Perozzi, B., Skiena, S.: Statistically significant detection of linguistic change. In: WWW (2015)

    Google Scholar 

  21. Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in neural language models. In: ICLR (2018)

    Google Scholar 

  22. Merity, S., Keskar, N.S., Socher, R.: An analysis of neural language modeling at multiple scales. arXiv:1803.08240 (2018)

  23. Merity, S., Keskar, N.S., Socher, R.: Regularizing and optimizing LSTM language models. In: ICRL (2018)

    Google Scholar 

  24. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv:1301.3781 (2013)

  25. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: ISCA (2010)

    Google Scholar 

  26. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)

    Google Scholar 

  27. Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)

    Google Scholar 

  28. Rosenfeld, A., Erk, K.: Deep neural models of semantic shift. In: NAACL (2018)

    Google Scholar 

  29. Rudolph, M., Blei, D.: Dynamic Bernoulli embeddings for language evolution. arXiv:1703.08052 (2017)

  30. Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoencoder for text generation. In: EMNLP (2017)

    Google Scholar 

  31. Serban, I.V., Ororbia, A.G., Pineau, J., Courville, A.: Piecewise latent variables for neural variational text processing. In: EMNLP (2017)

    Google Scholar 

  32. Shen, D., et al.: Baseline needs more love: on simple word-embedding-based models and associated pooling mechanisms. arXiv:1805.09843 (2018)

  33. Tan, C., Lee, L.: All who wander: on the prevalence and characteristics of multi-community engagement. In: WWW (2015)

    Google Scholar 

  34. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  35. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: lessons learned from the 2015 MSCOCO image captioning challenge. PAMI 39, 652–663 (2017)

    Article  Google Scholar 

  36. Wang, C., Blei, D., Heckerman, D.: Continuous time dynamic topic models. arXiv:1206.3298 (2012)

  37. Wang, X., McCallum, A.: Topics over time: a non-Markov continuous-time model of topical trends. In: ACM SIGKDD (2006)

    Google Scholar 

  38. Yang, Z., Hu, Z., Salakhutdinov, R., Berg-Kirkpatrick, T.: Improved variational autoencoders for text modeling using dilated convolutions. In: ICML (2017)

    Google Scholar 

  39. Yao, Z., Sun, Y., Ding, W., Rao, N., Xiong, H.: Dynamic word embeddings for evolving semantic discovery. In: WSDM (2018)

    Google Scholar 

  40. Zaheer, M., Ahmed, A., Smola, A.J.: Latent LSTM allocation joint clustering and non-linear dynamic modeling of sequential data. In: ICML (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edouard Delasalles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delasalles, E., Lamprier, S., Denoyer, L. (2019). Dynamic Neural Language Models. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11955. Springer, Cham. https://doi.org/10.1007/978-3-030-36718-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36718-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36717-6

  • Online ISBN: 978-3-030-36718-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics