Skip to main content

Ensemble Approach for Generalized Network Dismantling

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

Abstract

Finding a set of nodes in a network, whose removal fragments the network below some target size at minimal cost is called network dismantling problem and it belongs to the NP-hard computational class. In this paper, we explore the (generalized) network dismantling problem by exploring the spectral approximation with the variant of the power-iteration method. In particular, we explore the network dismantling solution landscape by creating the ensemble of possible solutions from different initial conditions and a different number of iterations of the spectral approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  2. Lipton, R., Rose, D., Tarjan, R.: Generalized nested dissection. SIAM J. Numer. Anal. 16, 346–358 (1979)

    Article  MathSciNet  Google Scholar 

  3. Pothen, A., Simon, H.D., Liou, K.-P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11, 430–452 (1990)

    Article  MathSciNet  Google Scholar 

  4. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-hard. Inf. Process. Lett. 42, 153–159 (1992)

    Article  MathSciNet  Google Scholar 

  5. Guattery, S., Miller, G.L.: On the quality of spectral separators. SIAM J. Matrix Anal. Appl. 19, 701–719 (1998)

    Article  MathSciNet  Google Scholar 

  6. Tian, L., Bashan, A., Shi, D.-N., Liu, Y.-Y.: Articulation points in complex networks. Nat. Commun. 8, 14223 (2017)

    Article  Google Scholar 

  7. Ren, X.-L., Gleinig, N., Tolić, D., Antulov-Fantulin, N.: Underestimated cost of targeted attacks on complex networks. Complexity 2018, 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks. Nature 406(6794), 378–382 (2000)

    Article  Google Scholar 

  9. Cohen, R., Erez, K., Ben-Avraham, D., Havlin, S.: Breakdown of the Internet under intentional attack. Phys. Rev. Lett. 86(16), 3682 (2001)

    Article  Google Scholar 

  10. Schneider, C.M., Moreira, A.A., Andrade, J.S., Havlin, S., Herrmann, H.J.: Mitigation of malicious attacks on networks. Proc. Natl. Acad. Sci. USA 108(10), 3838–3841 (2011)

    Article  Google Scholar 

  11. Gallos, L.K., Cohen, R., Liljeros, F., Argyrakis, P., Bunde, A., Havlin, S.: Attack strategies on complex networks, pp. 1048–1055. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Wandelt, S., Sun, X., Zanin, M., Havlin, S.: QRE: quick robustness estimation for large complex networks. Future Gener. Comput. Syst. 83, 413–424 (2018)

    Article  Google Scholar 

  13. Qin, S.-M., Ren, X.-L., Lü, L.-Y.: Efficient network dismantling via node explosive percolation. Commun. Theor. Phys. 71, 764 (2019)

    Article  MathSciNet  Google Scholar 

  14. Pastor-Satorras, R., Vespignani, A.: Immunization of complex networks. Phys. Rev. E 65(3), 36104 (2002)

    Article  Google Scholar 

  15. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925–979 (2015)

    Article  MathSciNet  Google Scholar 

  16. Antulov-Fantulin, N., Lančić, A., Šmuc, T., Štefančić, H., Šikić, M.: Identification of patient zero in static and temporal networks: robustness and limitations. Phys. Rev. Lett. 114, 248701 (2015)

    Article  Google Scholar 

  17. Lü, L., Chen, D., Ren, X.-L., Zhang, Q.-M., Zhang, Y.-C., Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63 (2016)

    Article  MathSciNet  Google Scholar 

  18. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351, 394–406 (2006)

    Article  MathSciNet  Google Scholar 

  19. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. J. ACM 46, 787–832 (1999)

    Article  MathSciNet  Google Scholar 

  20. Arora, S., Rao, S., Vazirani, U.: Expander flows, geometric embeddings and graph partitioning. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing - STOC 2004. ACM Press (2004)

    Google Scholar 

  21. Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38, 629–657 (2008)

    Article  MathSciNet  Google Scholar 

  22. Arora, S., Hazan, E., Kale, S.: Fast algorithms for approximate semidefinite programming using the multiplicative weights update method. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005). IEEE (2005)

    Google Scholar 

  23. Ben-Ameur, W., Mohamed-Sidi, M.-A., Neto, J.: The k-separator problem. In: Du, D.-Z., Zhang, G. (eds.) Computing and Combinatorics, pp. 337–348. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Janson, S., Thomason, A.: Dismantling sparse random graphs. Comb. Probab. Comput. 17(2), 259–264 (2008)

    Article  MathSciNet  Google Scholar 

  25. Deng, Y., Wu, J.: Optimal attack strategy with heterogeneous costs in complex networks. In: 2016 Annual IEEE Systems Conference (SysCon), pp. 1–5, April 2016

    Google Scholar 

  26. Deng, Y., Wu, J., Xiao, Y., Zhang, M., Yu, Y., Zhang, Y.: Optimal disintegration strategy with heterogeneous costs in complex networks. IEEE Trans. Syst. Man Cybern. Syst. 1–9 (2018). https://ieeexplore.ieee.org/document/8358066

  27. Dong, G., Gao, J., Du, R., Tian, L., Stanley, H.E., Havlin, S.: Robustness of network of networks under targeted attack. Phys. Rev. E 87, 052804 (2013)

    Article  Google Scholar 

  28. Braunstein, A., Dall’Asta, L., Semerjian, G., Zdeborová, L.: Network dismantling. Proc. Natl. Acad. Sci. USA 113, 12368–12373 (2016)

    Article  Google Scholar 

  29. Ren, X.-L., Gleinig, N., Helbing, D., Antulov-Fantulin, N.: Generalized network dismantling. Proc. Natl. Acad. Sci. USA 116(14), 6554–6559 (2019)

    Article  MathSciNet  Google Scholar 

  30. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162, 2005 (2004)

    MathSciNet  MATH  Google Scholar 

  31. Becker, S., Zhang, Y., Lee, A.A.: Geometry of energy landscapes and the optimizability of deep neural networks, arXiv preprint arXiv:1808.00408 (2018)

  32. Calatayud, J., Bernardo-Madrid, R., Neuman, M., Rojas, A., Rosvall, M.: Exploring the solution landscape enables more reliable network community detection, arXiv preprint arXiv:1905.11230 (2019)

  33. Good, B.H., de Montjoye, Y.-A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81, 046106 (2010)

    Article  MathSciNet  Google Scholar 

  34. Mugisha, S., Zhou, H.-J.: Identifying optimal targets of network attack by belief propagation. Phys. Rev. E 94, 012305 (2016)

    Article  Google Scholar 

  35. Zhou, H.-J.: Spin glass approach to the feedback vertex set problem. Eur. Phys. J. B 86, 455 (2013)

    Article  MathSciNet  Google Scholar 

  36. Pei, S., Wang, J., Morone, F., Makse, H. A.: Influencer identification in dynamical complex systems, arXiv preprint arXiv:1907.13017 (2019)

  37. Morone, F., Makse, H.A.: Influence maximization in complex networks through optimal percolation. Nature 524(7563), 65 (2015)

    Article  Google Scholar 

  38. Bar-Yehuda, R., Even, S.: A linear-time approximation algorithm for the weighted vertex cover problem. J. Algorithms 2(2), 198–203 (1981)

    Article  MathSciNet  Google Scholar 

  39. Fan, C., Sun, Y., Li, Z., Liu, Y.-Y., Chen, M., Liu, Z.: Dismantle large networks through deep reinforcement learning. In: ICLR 2019 (2019)

    Google Scholar 

  40. Chen, Y., Paul, G., Havlin, S., Liljeros, F., Stanley, H.E.: Finding a better immunization strategy. Phys. Rev. Lett. 101, 58701 (2008)

    Article  Google Scholar 

  41. Zdeborová, L., Zhang, P., Zhou, H.-J.: Fast and simple decycling and dismantling of networks. Sci. Rep. 6, 37954 (2016)

    Article  Google Scholar 

  42. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent Advances in Graph Partitioning, pp. 117–158. Springer, Cham (2016)

    Chapter  Google Scholar 

  43. Wandelt, S., Sun, X., Feng, D., Zanin, M., Havlin, S.: A comparative analysis of approaches to network-dismantling. Sci. Rep. 8(1), 13513 (2018)

    Article  Google Scholar 

  44. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–30 (1998)

    Article  Google Scholar 

  45. Kunegis, J.: The koblenz network collection. In: Proceedings of the International Web Observatory Workshop, pp. 1343–1350 (2013)

    Google Scholar 

Download references

Acknowledgements

X.L.R. thanks to the financial support of China Scholarship Council (CSC). N.A.-F. thanks to the financial support from the EU Horizon 2020 project SoBigData under grant agreement No. 654024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nino Antulov-Fantulin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, XL., Antulov-Fantulin, N. (2020). Ensemble Approach for Generalized Network Dismantling. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_65

Download citation

Publish with us

Policies and ethics