Skip to main content

Comparative Network Robustness Evaluation of Link Attacks

Part of the Studies in Computational Intelligence book series (SCI,volume 881)

Abstract

Existing link attack strategies in networks differ in the importance or robustness metric, that quantifies the effect of a link removal upon the network’s vulnerability. In this paper, we investigate the role of the effective resistance matrix in the removal of links on a graph and compare this removal strategy with other state-of-the-art attack strategies over synthetic networks. The results of the analysis show that the effective resistance and the link-betweenness strategies behave similarly and are more harmful than the degree based strategies when evaluating robustness with different performance measures.

Keywords

  • Complex networks
  • Robustness
  • Graph resistance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36687-2_61
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36687-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

Notes

  1. 1.

    Weighted graph matrices are denoted by a tilde.

  2. 2.

    In the topology domain, we speak about a graph consisting of nodes and links, while in the geometric space, a node corresponds to a point or node and the links in the simplex connect nodes.

  3. 3.

    The line graph \(l\left( G\right) \) of the graph \(G\left( N,L\right) \) has as set of nodes the links of G and two nodes in the line graph \(l\left( G\right) \) are adjacent if and only if they have, as links in G, exactly one node of G in common [16].

References

  1. Abbas, W., Egerstedt, M.: Robust graph topologies for networked systems. In: 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 85–90 (2012)

    CrossRef  Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–381 (2000)

    CrossRef  Google Scholar 

  3. Cetinay, H., Devriendt, K., Van Mieghem, P.: Nodal vulnerability to targeted attacks in power grids. Appl. Netw. Sci. 3, 34 (2018)

    CrossRef  Google Scholar 

  4. Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resistance of a graph captures its commute and cover times. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, pp. 574–586. ACM, New York (1989)

    Google Scholar 

  5. Devriendt, K., Van Mieghem, P.: The simplex geometry of graphs. J. Complex Netw. 7(4), 469–490 (2019)

    MathSciNet  CrossRef  Google Scholar 

  6. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. The Mathematical Association of America, Washington, D.C. (1984)

    MATH  Google Scholar 

  7. Ellens, W., Spieksm, F.M., Van Mieghem, P., Jamakovic, A., Kooij, R.E.: Effective graph resistance. Linear Algebra Appl. 435(10), 2491–2506 (2011)

    MathSciNet  CrossRef  Google Scholar 

  8. Erdös, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci 5, 17–61 (1960)

    Google Scholar 

  9. Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Frank, H., Frish, I.: Analysis and design of survivable networks. IEEE Trans. Commun. Technol. 8(5), 501–519 (1970)

    MathSciNet  CrossRef  Google Scholar 

  11. Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)

    MathSciNet  CrossRef  Google Scholar 

  12. Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)

    CrossRef  Google Scholar 

  13. Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    MathSciNet  CrossRef  Google Scholar 

  14. Li, X., Shi, Y.T.: A survey on the Randić index. Commun. Math. Comput. Chem. 59(1), 127–156 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Ranjan, G., Zhang, Z.L., Boley, D.: Incremental computation of pseudo-inverse of Laplacian. In: Combinatorial Optimization and Applications, COCOA, pp. 730–749. Springer, Switzerland (2014)

    CrossRef  Google Scholar 

  16. Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  17. Van Mieghem, P., Devriendt, K., Cetinay, H.: Pseudo-inverse of the Laplacian and best spreader node in a network. Phys. Rev. E 96(3), 032311 (2017)

    MathSciNet  CrossRef  Google Scholar 

  18. Van Mieghem, P., Doerr, C., Wang, H., Martin Hernandez, J., Hutchison, D., Karaliopoulos, M., Kooij, R.E.: A framework for computing topological network robustness. Delft University of Technology, Report 20101218 (2010). (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports)

  19. Van Mieghem, P.: Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks. arXiv preprint arXiv:1401.4580 (2014)

  20. Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness of complex networks via the effective graph resistance. Eur. Phys. J. B 87(9), 221 (2014)

    CrossRef  Google Scholar 

  21. Wu, J., Barahona, M., Tan, Y.J., Deng, H.Z.: Spectral measure of structural robustness in complex networks. Trans. Sys. Man Cyber. Part A 41(6), 1244–1252 (2011)

    CrossRef  Google Scholar 

  22. Zeng, A., Liu, W.: Enhancing network robustness for malicious attacks. Phys. Rev. E 85(6), 066130 (2012)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clara Pizzuti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Pizzuti, C., Socievole, A., Van Mieghem, P. (2020). Comparative Network Robustness Evaluation of Link Attacks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_61

Download citation