Abbas, W., Egerstedt, M.: Robust graph topologies for networked systems. In: 3rd IFAC Workshop on Distributed Estimation and Control in Networked Systems, pp. 85–90 (2012)
CrossRef
Google Scholar
Albert, R., Jeong, H., Barabási, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–381 (2000)
CrossRef
Google Scholar
Cetinay, H., Devriendt, K., Van Mieghem, P.: Nodal vulnerability to targeted attacks in power grids. Appl. Netw. Sci. 3, 34 (2018)
CrossRef
Google Scholar
Chandra, A.K., Raghavan, P., Ruzzo, W.L., Smolensky, R.: The electrical resistance of a graph captures its commute and cover times. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, pp. 574–586. ACM, New York (1989)
Google Scholar
Devriendt, K., Van Mieghem, P.: The simplex geometry of graphs. J. Complex Netw. 7(4), 469–490 (2019)
MathSciNet
CrossRef
Google Scholar
Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. The Mathematical Association of America, Washington, D.C. (1984)
MATH
Google Scholar
Ellens, W., Spieksm, F.M., Van Mieghem, P., Jamakovic, A., Kooij, R.E.: Effective graph resistance. Linear Algebra Appl. 435(10), 2491–2506 (2011)
MathSciNet
CrossRef
Google Scholar
Erdös, P., Renyi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci 5, 17–61 (1960)
Google Scholar
Fiedler, M.: Algebraic connectivity of graphs. Czech. Math. J. 23(2), 298–305 (1973)
MathSciNet
MATH
Google Scholar
Frank, H., Frish, I.: Analysis and design of survivable networks. IEEE Trans. Commun. Technol. 8(5), 501–519 (1970)
MathSciNet
CrossRef
Google Scholar
Ghosh, A., Boyd, S., Saberi, A.: Minimizing effective resistance of a graph. SIAM Rev. 50(1), 37–66 (2008)
MathSciNet
CrossRef
Google Scholar
Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(5), 056109 (2002)
CrossRef
Google Scholar
Klein, D.J., Randić, M.: Resistance distance. J. Math. Chem. 12, 81–95 (1993)
MathSciNet
CrossRef
Google Scholar
Li, X., Shi, Y.T.: A survey on the Randić index. Commun. Math. Comput. Chem. 59(1), 127–156 (2008)
MathSciNet
MATH
Google Scholar
Ranjan, G., Zhang, Z.L., Boley, D.: Incremental computation of pseudo-inverse of Laplacian. In: Combinatorial Optimization and Applications, COCOA, pp. 730–749. Springer, Switzerland (2014)
CrossRef
Google Scholar
Van Mieghem, P.: Graph Spectra for Complex Networks. Cambridge University Press, Cambridge (2011)
MATH
Google Scholar
Van Mieghem, P., Devriendt, K., Cetinay, H.: Pseudo-inverse of the Laplacian and best spreader node in a network. Phys. Rev. E 96(3), 032311 (2017)
MathSciNet
CrossRef
Google Scholar
Van Mieghem, P., Doerr, C., Wang, H., Martin Hernandez, J., Hutchison, D., Karaliopoulos, M., Kooij, R.E.: A framework for computing topological network robustness. Delft University of Technology, Report 20101218 (2010). (www.nas.ewi.tudelft.nl/people/Piet/TUDelftReports)
Van Mieghem, P.: Graph eigenvectors, fundamental weights and centrality metrics for nodes in networks. arXiv preprint arXiv:1401.4580 (2014)
Wang, X., Pournaras, E., Kooij, R.E., Van Mieghem, P.: Improving robustness of complex networks via the effective graph resistance. Eur. Phys. J. B 87(9), 221 (2014)
CrossRef
Google Scholar
Wu, J., Barahona, M., Tan, Y.J., Deng, H.Z.: Spectral measure of structural robustness in complex networks. Trans. Sys. Man Cyber. Part A 41(6), 1244–1252 (2011)
CrossRef
Google Scholar
Zeng, A., Liu, W.: Enhancing network robustness for malicious attacks. Phys. Rev. E 85(6), 066130 (2012)
CrossRef
Google Scholar