Skip to main content

Total Positive Influence Domination on Weighted Networks

Part of the Studies in Computational Intelligence book series (SCI,volume 881)

Abstract

We are proposing two greedy and a new linear programming based approximation algorithm for the total positive influence dominating set problem in weighted networks. Applications of this problem in weighted settings include finding: a minimum cost set of nodes to broadcast a message in social networks, such that each node has majority of neighbours broadcasting that message; a maximum trusted set in bitcoin network; an optimal set of hosts when running distributed apps etc.. Extensive experiments on different generated and real networks highlight advantages and potential issues for each algorithm.

Keywords

  • Domination sets
  • Total positive influence
  • Vertex-weighted networks
  • Network communities

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-36687-2_27
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-36687-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Notes

  1. 1.

    http://perso.crans.org/aynaud/communities/.

  2. 2.

    https://www.gurobi.com.

  3. 3.

    https://github.com/dvgreetham/domset/.

References

  1. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 3–14. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  2. Blondel, V., Guillaume, J., Lambiotte, R., Mech, E.: Fast unfolding of communities in large networks. J. Stat. Mech. 2008, P10008 (2008)

    CrossRef  Google Scholar 

  3. Bollobás, B.: Random Graphs, 2nd edn. Cambridge University Press (2001). https://doi.org/10.1017/CBO9780511814068

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011). https://doi.org/10.1561/2200000016

    CrossRef  MATH  Google Scholar 

  5. Chen, N., Meng, J., Rong, J., Zhu, H.: Approximation for dominating set problem with measure functions. Comput. Inform. 23, 37–49 (2004)

    MathSciNet  MATH  Google Scholar 

  6. Condon, A., Karp, R.: Algorithms for graph partitioning on the planted partition model. Random Struct. Algor. 18, 116–140 (2001)

    MathSciNet  CrossRef  Google Scholar 

  7. Dhawan, A., Rink, M.: Positive influence dominating set generation in social networks. In: 2015 International Conference on Computing and Network Communications (CoCoNet), pp. 112–117, December 2015

    Google Scholar 

  8. Dinh, T., Shen, Y., Nguyen, D., Thai, M.: On the approximability of positive influence dominating set in social networks. J. Comb. Optim. 27(3), 487–503 (2014). https://doi.org/10.1007/s10878-012-9530-7

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Dunbar, J., Hoffman, D., Laskar, R., Markus, L.: \(\alpha \)-domination. Discrete Math. 211, 11–26 (2000)

    MathSciNet  CrossRef  Google Scholar 

  10. Gagarin, A., Poghosyan, A., Zverovich, V.: Randomized algorithms and upper bounds for multiple domination in graphs and networks. Discrete Appl. Math. 161(4-5), 604 – 611 (2013). http://www.sciencedirect.com/science/article/pii/S0166218X11002423

    MathSciNet  CrossRef  Google Scholar 

  11. Gagarin, A., Poghosyan, A., Zverovich, V.E.: Upper bounds for alpha-domination parameters. Graphs Comb. 25(4), 513–520 (2009)

    CrossRef  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  13. Greaves, C., Reddy, P., Sheppard, K.: Supporting behaviour change for diabetes prevention. In: Schwarz, P., Reddy, P., Greaves, C., Dunbar, J. (eds.) Diabetes Prevention in Practice, pp. 19–29. Tumaini Institute for Prevention Management, Dresden (2010)

    Google Scholar 

  14. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and function using networkX. In: Proceedings of the 7th Python in Science Conference (SciPy2008), Passadena, CA, USA, pp. 11–15, August 2008

    Google Scholar 

  15. Holme, P., Kim, B.J.: Growing scale-free networks with tunable clustering. Phys. Rev. E 65, 026107 (2002)

    CrossRef  Google Scholar 

  16. Johnson, D.S., Aragon, C.R., Mcgeoch, L.A., Schevon, C.: Optimization by simulated annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper. Res. 39, 378–406 (1991)

    CrossRef  Google Scholar 

  17. Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-tuple domination in graphs. Inf. Process. Lett. 89(2), 75–83 (2004). https://doi.org/10.1016/j.ipl.2003.10.004

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Lee, Y.T., Sidford, A.: Efficient inverse maintenance and faster algorithms for linear programming. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 230–249, October 2015

    Google Scholar 

  19. Leskovec, J., Krevl, A.: SNAP datasets: stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  20. Lewandowski, G., Condon, A.: Experiments with parallel graph coloring heuristics and applications of graph coloring (1994)

    Google Scholar 

  21. Lin, G., Guan, J., Feng, H.: An ILP based memetic algorithm for finding minimum positive influence dominating sets in social networks. Phys. A: Stat. Mech. Appl. 500, 199–209 (2018). http://www.sciencedirect.com/science/article/pii/S0378437118302218

    MathSciNet  CrossRef  Google Scholar 

  22. Molnàr Jr., F., Derzsy, N., Czabarka, E., Székely, L., Szymanski, B.K., Korniss, G.: Dominating scale-free networks using generalized probabilistic methods. Sci. Rep. 4(6308) (2014). http://www.nature.com/srep/2014/140909/srep06308/full/srep06308.html

  23. Nguyen, T.H.: Graph coloring benchmark instances. https://turing.cs.hbg.psu.edu/txn131/graphcoloring.html. Accessed 14 Oct 2018

  24. Porumbel, D.: DIMACS graphs: benchmark instances and best upper bounds (2011). http://www.info.univ-angers.fr/pub/porumbel/graphs/

  25. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015). http://networkrepository.com

  26. Vazquez-Araujo, F., Dapena, A., Souto-Salorio, M.J., Castro, P.M.: Calculation of the connected dominating set considering vertex importance metrics. Entropy 20(2) (2018). http://www.mdpi.com/1099-4300/20/2/87

    MathSciNet  CrossRef  Google Scholar 

  27. Vukadinovic Greetham, D., Poghosyan, A., Charlton, N.: Weighted alpha-rate dominating sets in social networks. In: Tenth International Conference on Signal-Image Technology and Internet-Based Systems (SITIS), Marrakech, Morocco, pp. 369–375, 23–27 November 2014

    Google Scholar 

  28. Wang, F., et al.: On positive influence dominating sets in social networks. Theor. Comput. Sci. 412(3), 265–269 (2011). http://www.sciencedirect.com/science/article/pii/S0304397509007221

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danica Vukadinović Greetham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Vukadinović Greetham, D., Charlton, N., Poghosyan, A. (2020). Total Positive Influence Domination on Weighted Networks. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_27

Download citation